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INTRODUCTION 

This thesis embodies the work done by the author under the 

guidance of Dr. A. Subramanian. 

Domination in graphs has attracted the attention of many a 

mathematician due to its applicability in several areas like network 

problems, facility location problems, social network theory, school bus 

routing and set of representatives etc. A detailed analysis of domination and 

its applications is given in [34], Fundamentals of domination in graphs. 

In ordinary domination for every vertex outside the dominating 

set there should be an adjacent vertex inside the dominating set. If we think 

of each vertex in a dominating set as a fileserver for a computer network 

then each computer in the network has direct access to a fileserver. It is 

sometimes reasonable to assume that this access be available even when one 

of the fileservers goes down. This has necessitated the existence of atleast 

two fileservers for access to each computer. Thus fault tolerance may 

compel the existence of more fileservers for access. 

Double domination introduced by Harary and Haynes [19] 

serves as a model for the type of fault tolerance where each computer has 

access to atleast two fileservers and each of the fileservers has direct access 

to atleast one backup fileserver. 



Sampathkumar and Pushpalatha [30] have introduced the 

concept of strong weak domination in graphs. This concept has application 

to traffic control, set of representatives with powers etc. A combination of 

the concepts of double domination and strong weak domination is the 

concept of domination strong domination where in for every vertex outside 

the dominating set, there are two vertices inside the dominating set, one of 

which dominates the outside vertex and the other strongly dominates the 

outside vertex. It has application in the formation of executive body in an 

administration. The executive body should be constituted in such a way that 

for each member of the organisation there should be atleast two members in 

the executive body who know them and in case of necessity the strength of 

one of them may be used to make the member to follow the rules. In 

communication network each computer has to access atleast two fileservers 

one of them being a " Powerful " fileserver. 

Domination strong domination concept is the main theme of 

this thesis. A detailed study of this new type of domination has been made 

in the thesis. This thesis contains five chapters with a Bibliography at the 

end. 

The first Chapter contains preliminary results needed for work 

in the study of this new type of domination. 



The Second Chapter deals with the definition of domination 

strong domination (dom-strong domination or strong - double domination or 

dsd). The dom-strong domination number for standard graphs are found and 

the bounds for dom-strong domination number are also obtained. Nordhaus -

Gaddum type results for dom-strong domination are attempted, k-dom-

strong domination is defined and the results are obtained. The effects on 

Ydsd (G) when G is modified by deleting a vertex is also discussed. 

The Third Chapter deals with minimal dom-strong 

dominating set, excellent dsd set, split dsd set and dsd- domatic number. 

Chapter four covers Independent dsd set, dsd irredundant and 

connected dsd sets. 

The studies of complexity of double domination and dom-

strong domination and fractional double domination constitute the fifth 

chapter. We proved that both the dd set and dsd sets are NP-Complete. 

We conclude with some Open problems. 

• • • 
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CHAPTER -I 

1.1. Preliminaries : 

In this chapter we collect the basic definitions and theorems which 

are needed for the subsequent chapters. For graph theoretic terminology, 

we refer to Harary [18] and Teresa Haynes [34]. 

1.1.1. Definition : 

A graph G = ( V, E ) consists of a finite set denoted by V and a 

collection E of unordered pairs {u,v} of distinct elements from V. 

Each element of V is called a vertex and each element of E is 

called an edge. 

The vertex set and the edge set of G are denoted by V(G) and E(G) 

respectively or simply V and E. 

1.1.2. Definition : 

If e = {u,v} is an edge, we write e = uv, we say that e joins the 

vertices u and v ; u and v are adjacent vertices ; u and v are incident 

with e. 

If two vertices are not joined then we say that they are non-

adjacent. 
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If two distinct edges are incident with a common vertex then they 

are said to be adjacent to each other. 

1.1.3. Definition : 

The number of vertices, the cardinality of V is called the order of 

G and is denoted |V| or p. The cardinality of its edge set is called the 

size of G and is denoted by |E| or q. 

A graph with p vertices and q edges is called a (p,q) - graph. 

1.1.4. Definition : 

A graph H is called a subgraph of a graph G if V(H) cz V (G) and 

E(H) c E(G). A spanning subgraph of G is a subgraph H with 

V(H) = V(G). For any set S of vertices of G5 the induced subgraph (S) is 

the maximal subgraph of G with vertex set S. Thus two vertices of S are 

adjacent in (S) if and only if they are adjacent in G. 

1.1.5. Definition : 

The degree of a vertex v in a graph G is the number of edges of G 

which are incident with v and is denoted by deg v. The minimum and 

maximum degrees of vertices of G are denoted by 8 and A respectively. 
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1.1.6. Definition : 

A vertex of G with degree 0 is called an isolated vertex; a vertex of 

G with degree 1 is called a pendant vertex. A vertex is called a support if 

it is adjacent to a pendant vertex. 

1.1.7. Definition : 

A graph G is said to be a regular - graph if every vertex of G is of 

same degree. 

So a graph G is r- regular means every vertex of G is of degree r. 

Any 3-regular graph is called a cubic-graph. 

1.1.8. Definition: 

Let G = ( V, E ) be a graph. The complement G of a graph G has 

V(G) = V(G) and uve E (G) if and only if uv £ E (G). 

1.1.9. Definition : 

The open neighborhood denoted by N (v) of a vertex v consists of 

the set of vertices adjacent to v, that is 

N(v)={weV/vweE}. 

Similarly the closed neighborhood of a vertex v denoted by N [v] is 

N (v) u {v}. (or) N [v] = N (v) u {v}. 

3 



1.1.10. Definition : 

Let u and v be the vertices in a graph G. A walk u-v of length k is 

an alternating sequence of vertices and edges, namely 

u= Uo,ei,Ui,e2 ek,uk = v. If all the k edges are distinct then the walk is 

called a trail. 

A walk in which all the vertices are distinct is called a path and if 

Uo=Ukbut Ui,u2,—uk_i are all distinct then the trail is a cycle. 

A walk is said to be open if u and v are distinct vertices; it is closed 

otherwise. 

A path on n vertices is denoted by Pn and a cycle an n vertices is 

denoted by Cn. 

1.1.11. Definition : 

A graph G is a complete graph if every pair of vertices are 

adjacent. A complete graph on p vertices is denoted by Kp. 

1.1.12. Definition : 

A graph G is said to be connected if every pair of distinct vertices 

of G are joined by a path; otherwise G is disconnected. 

A maximal connected subgraph of G is called a component of G. 

4 



So a connected graph has exactly one component, whereas a 

disconnected graph has atleast two components. 

1.1.13. Definition : 

The distance d(u,v) between two vertices u and v in G is the length 

of a shortest u-v path in G. 

The diameter of G denoted by diam (G) of a connected graph is the 

maximum distance between two vertices of G. 

1.1.14. Definition : 

A graph which contains no cycles is called an acyclic graph or a 

forest. A connected acyclic graph is called a tree. 

1.1.15. Definition : 

A tree which yields a path when its pendant vertices are removed is 

called a caterpillar. 

A spider is a tree which has atmost one vertex of degree > 3. 

1.1.16. Definition : 

A subdivision of an edge e = uv of a graph G is the replacement of 

the edge e by a path (u,«),v). The graph obtained from G by subdividing 

each edge of G exactly once is called the subdivision graph of G. 
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1.1.17. Definition : 

Let G = (V, E) be a graph. A subset D of V is said to be 

independent if no two vertices in D are adjacent. 

The independence number (30 (G) is the maximum cardinality of an 

independent set in G. Note that every subset of an independent set is 

independent. 

1.1.18. Definition: 

The lower independence number / (G) is the minimum cardinality 

of a maximal independent set of G. 

1.1.19. Definition : 

The girth g (G) of a graph G is the length of a shortest cycle in G. 

The circumference c (G) of G is the length of a longest cycle. 

1.1.20. Theorem: 

For any graph G of size |E| = m, ^deg(v) = 2m. 

1.1.21. Definition : 

A vertex and an edge are said to cover each other if they are 

incident. A set of vertices which cover all the edges of a graph G is 

called a vertex cover of G. 

6 



The smallest number of vertices in any cover for G is called its 

covering number and is denoted by a0 (G). 

1.1.22. Definition : 

Let G = (V, E) be a graph. A subset D of V is called a dominating 

set if every vertex ueV is either an element of D or is adjacent to an 

element of D. 

A dominating set D is a minimal dominating set if no proper subset 

D' a D is a dominating set. 

The minimum cardinality of a dominating set is denoted by y. 

1.1.23. Definition : 

Let G = (V, E) be a graph. A set D c V is a strong dominating set 

of G if every vertex in V-D is strongly dominated by atleast one vertex 

inD. 

1.1.24. Definition : 

Let G = (V,E) be a graph. A set D c V is a weak - dominating set 

of G if every vertex in V-D is weakly dominated by atleast one vertex 

inD. 

7 



Given two adjacent vertices u and v, u strongly dominates v if 

deg u > deg v. Also v weakly dominates u if deg v < degu. 

The strong domination number ys (G) is the minimum cardinality 

of a strong dominating set of G. 

Similarly the weak domination number yw (G) is the minimum 

cardinality of a weak dominating set of G. 

Sampathkumar and Pushpalatha [30] introduced the notions of 

strong and weak domination in graphs. 

1.1.25. Theorem : 

A dominating set D is a minimal dominating set if and only if for 

every u e D one of the following holds: 

(a) u is an isolate of D 

(b) there exists a vertex v e V-D such that N (v) n D = {u}. 

1.1.26. Definition : 

A property P of sets of vertices is said to be hereditary if whenever 

a set S has property P, so does any proper subset S'czS. 

A property P is Superhereditary if whenever a set S has property P, 

so does every proper superset S'=)S. 
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1.1.27. Definition : 

An independent set D is maximal independent if for every vertex 

u e V - D, there is a vertex v e D such that u is adjacent to v. 

An independent set D is maximal independent if and only if it is 

independent and dominating. This was first observed by Berge. 

1.1.28. Definition : 

Let D be a set of vertices and let u e D. Then a vertex v is a 

private neighbor of u (with respect to D) if N [v] n D = {u} 

1.1.29. Definition : 

A set D is a total dominating set if N (D) = V or equivalently, if for 

every vertex v e V, there exists u e D, u ^ v such that u and v are 

adjacent. 

The total domination number yt (G) is the minimum cardinality of a 

total dominating set of G. 

1.1.30. Definition : 

A set D of vertices is irredundant if for every vertex v e D, 

pn[v,D] =£ (j), that is every vertex v e D has atleast one private neighbor. 

Here pn [v,D] means private neighbor of v with respect to D. 
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ir (G) : The minimum cardinality of a maximal irredundant set 

inG. 

IR (G): The maximum cardinality of an irredundant set in G. 

1.1.31. Proposition: 

A dominating set D is a minimal dominating set if and only if it is 

dominating and irredundant. 

1.1.32. Proposition : 

Every minimal dominating set in a graph G is a maximal 

irredundant set of G. 

1.1.33. Theorem: 

For any graph G, 

^ - < ir{G) < y(G) < 2ir(G) -1 

1.1.34. Definition : 

A sequence l < a < b < c < d < e < f i s said to be a domination 

sequence if there exists a graph G with ir (G) = a, y (G) = b, i (G) = c, 

p0 (G)= d, r (G) = e and IR (G) = f. 

10 



1.1.35. Definition: 

For a graph G with edges, the line graph L (G) is the graph whose 

vertices correspond to the edges of G and two vertices in L (G) are 

adjacent if and only if the corresponding edges in G are adjacent. 

1.1.36. Definition : 

The domatic number d (G) of a graph G is defined to be the 

maximum number of elements in a partition of V (G) into dominating 

sets. 

Cockayne and Hedetniemi defined domatic number. 

1.1.37. Definition : 

The total domatic number dt (G) is the largest number of sets in a 

partition of V into total dominating sets. 

The connected domatic number dc (G) of a graph G is the 

maximum number of sets in a partition of V into connected dominating 

sets. 

Hedetniemi and Laskar defined connected domatic number. 

1.1.38. Definition : 

If there exists atleast one partition of V into independent 

dominating sets then G is called idomatic and the idomatic number id(G) 

11 



equals the maximum number of sets in a partition of V into independent 

dominating sets. 

1.1.39. Theorem: 

For any graph G, 

d (G)> 
n-8{G) 

and 

dt (G) > 
n-S(G) + l 

1.1.40. Theorem: 

For any graph G, d (G) + d (G) < n+1 with equality if and only if 

G = K„ or K 

1.1.41. Theorem : 

For any graph G with 5 (G) > 1 and A (G) < n - 2, 

dt(G) + d t ( G ) < n - l . 

1.1.42. Definition: 

A Split graph is a graph G = (V,E) whose vertices can be 

partitioned into two sets V and V" where the vertices in V form a 

complete graph and the vertices in V" are independent. 

12 



1.1.43. Notation : 

NP: Nondeterministic Polynomial time. 

1.1.44. Theorem : 

A Dominating set is NP - complete. This theorem was proved by 

David Johnson. 

1.1.45. Definition : 

Let f be the function defined by f :V (G) -» [0,1] with £ / (« ) > 1 
ueN(v) 

for every v e V (G). The fractional domination number Yf(G) is the 

minimum value of X / ( v ) ' w n e r e m e minimum is taken over all 
veP(G) 

dominating functions f. 

1.1.46. Theorem : 

If G has n vertices and is k - regular then yf(G) = 
ft T 1 

1.1.47. Result: 

(a) For a cycle Cn, yf (Cn) = | 

(b) For a complete graph Kn, yf (Kn) = 1. 

• • • 
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CHAPTER - II 

In this chapter we introduce our concept Domination strong 

domination (Dom-strong domination or strong double domination or 

dsd) and Nordhaus- Gaddum type results are established. 

2.1. DOM- STRONG DOMINATION IN GRAPHS 

2.1.1. Definition : 

Let G = (V, E) be a graph. A subset D of V is called a Domination 

strong domination set or dom-strong dominating set or dsd set or strong 

double dominating set if for every v e V - D , there exists Ui, u2 e D such 

that ujv, u2v e E (G) and deg ui > deg v. 

The minimum cardinality of a Dom-Strong dominating set is called 

Dom-Strong domination number and is denoted by ydsd-

2.1.2. Example: 

Consider P 6 : 

• o o o o • 
Vi V2 V3 v 4 v 5 V6 
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Let V (P6) = {vi,V2,v3,V4,v5,v6} and the subset D = { v1,v3,v5,v6}. 

Here D is a dsd set; For: v2 e V-D, vi dominates v2 and v3 strong 

dominates v2. Also for v4: v3 dominates v4 and v5 strong dominates v4. 

The minimum cardinality of this case is Ydsd = 4. 

2.1.3. Observations : 

(i)Ydsd(Pn) = 
^ 

v^y 
+1, if n is even 

, if n is odd. 

(ii)Ydsd(Kn) =2 

(Hi) Ydsd (C„) = n + 1 

(iv)Ydsd(Km,n),(m>n) = n 

(v) Ydsd (S) = |V (S)|, S is a star (or) Ydsd (K1;„) = n + 1 

(vi)Ydsd(Wn+0 + 1 

(vii) For a regular graph, Ydsd = Ydd-oPe 

(viii) Ydsd(P)= 4, where P is the Petersen Graph. 

15 



2.1.4. Theorem : 

Let G be a graph with no isolates. Then 2 < yds(i (G) < n and the 

bounds are sharp. 

Proof: 

Since any dsd set has atleast two elements and atmost n elements, 

the theorem follows. 

For a star, ydsd = n and for Kn, ydsd = 2. Therefore the bounds are 

sharp. • 

2.1.5. Lemma : 

If a vertex v has degree one then v must be in every dsd set of G. 

That is every dsd set contains all pendant vertices. 

Proof: 

Let D be any dsd set of G. Let v be a pendant vertex with support 

say u. It v g D then there must be two points say x, y e D such that x 

dominates u and y strong dominates u. Therefore x and y are adjacent to 

v. Then deg v > 2, a contradiction, since v is a pendent vertex. So v e D. 

Hence, the lemma. • 

16 



2.1.6. Remark : 

Support of a pendant vertex need not be in a dsd set. 

2.1.7. Remark : 

If the support u of a pendant vertex v is not in a dsd set then there 

exists a x e N (u) such that deg x > deg u. 

2.1.8. Theorem : 

A connected graph G has V as its unique dsd set if and only if G is 

a star. 

Proof: 

If G is a star then V is the only dsd set. Conversely suppose V is 

the unique dsd set. 

Suppose G is not a star. 

Let x be a point with maximum degree, then all its neighbors are of 

degree one. (Otherwise V - {v} is a dsd set). If y e V - N [x] then G is 

disconnected. So A = n - l , a contradiction. Hence, G is a star. • 

17 



2.1.9. Theorem: 

Ydsd = 2 if and only if there exists yi and y2 such that 

deg y! = deg y2 = A, deg yi > n -2. 

Proof: 

Let there exists yi and y2 satisfying the hypothesis. Let 

D = {yi,y2}. Let x e V - D, then x is adjacent to both y! and y2. 

Therefore deg x < deg yi and deg x < deg y2. Therefore D is a dsd set. 

Conversely, Let D = {yi,y2} be a dsd set. Every point x e V-D is 

adjacent to both y! and y2. Therefore deg yi > n -2, deg y2 > n - 2. Also 

deg x < deg yi or deg y2. 

Suppose deg yi and deg y2 < A . Then there exists a x e V - D of 

degree A. Therefore D is not a dsd set. Hence, deg yx = deg y2 = A. If 

deg yi * deg y2, then deg yi = n -1 and deg y2 = n-2. Therefore yi and 

y2 are adjacent. Therefore there exists a x e V - D such that x is not 

adjacent to y2, a contradiction, since D is a dsd set. So deg yi = deg y2. 

Hence, the theorem. • 

18 



2.1.10. Theorem: 

Let G be a graph without isolates and let there exist a ydsd set which 

is not independent. Then y (G) + 1 < ydsd(G). 

Proof: 

Let D be a ydsd set which is not independent. Let x e D be such 

that x is adjacent to some point of D. If N (x) n (V-D) = (J) then as G has 

no isolates, N (x) n D * ty. Hence D - {x} is a dominating set. 

Therefore y (G) < |D - {x} | = ydsd (G) - 1. 

Therefore y(G) + l<ydsd(G). 

If N (x) r\ (V-D) * (f> then for any y e N (x) n (V-D), there exists a 

z e D such that z is adjacent to y. As x is adjacent to some point of D, 

D - {x} is a dominating set. 

Therefore y (G) < |D - {x} | < ydsd (G)- 1. 

So y (G) + 1 < ydsd(G). 

The bound is sharp, For: K2,4 has y = 1 and ydsd = 2. • 
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2.1.11. Remark : 

Let G have no isolates. If every ydsd set is independent then y = yasd 

may not be true. 

For example, consider the graph G: 

1 2 3 

K 3,4 

Here every ydSd set is independent. But 2 = y = ydsd - 1 • 

Let G be a graph with no isolates. Let D be a ydsd set. Suppose D 

is independent and suppose there exists a subset S of D with |S| > 2 such 

that, 

(i) N ( S ) c N ( D - S) and 

(ii) a subset T of V - D such that |T| < |S| and N (T) 3 S then 

Y < Ydsd-

For: T u ( D - S ) is a dominating set and 

y = | T u ( D - S ) | < | D Ydsd-

20 



2.2. k - Dom - Strong domination in graphs : 

2.2.1. Definition : 

Let G = (V, E) be a simple graph. A subset D of V is called a 

k - dom - strong dominating set of G, (k a positive integer) if for every 

v e V-D, there exists two points ubu2 e D such that d ( Uj, v) < k, 

i=l ,2andd(u 2)>d(v) . 

The minimum cardinality of a k - dom - strong dominating set is 

denoted by ykdsd (G) and is called the k - dsd number. 

2.2.2. Definition : 

Let G = (V,E) be a graph. A set D of V is k-independent if for 

every u, v e D, d (u,v) > k. 

2.2.3. Observation : 

Yk^Ykdsd^ Ydsd-

2.2.4. Observation: 

When k = 1, we have the dom - strong domination. 
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2.2.5. Result: 

Let G be a graph with no isolates and order of G = n > 2 then 

2 ^ Ykdsd (G) < n and the bounds are sharp. 

Proof: 

Since any k - dsd set has atleast two elements and atmost n 

elements we have 2 < Ykdsd (G) < n and the bounds are sharp, For: Kn has 

Ykdsd = 2 and For G = nk2, Ykdsd = 2n = order of G. • 

2.2.6. Remark: 

" 2, if k > 2 

Ykdsd (Ki,n) = ~S 
(̂  n+1, if k = l 

2.2.7. Observation: 

A dsd set contains all the pendant vertices but a k- dsd set ( k > 2) 

need not contain all pendant vertices. 
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2.2.8. Theorem: 

A connected graph G of order > 3 has V as its unique ykdsd - set if 

and only if k = 1 in which case G is a star. 

Proof: 

If k = 1, G has V as its unique Ykdsd - set if and only if G is a star. 

Conversely, Let G have V as its unique ykdsd - set. Suppose k > 2. Then 

G is not a star. Therefore diam (G) > 3. Hence, there exists an induced 

path of length > 3. Hence, all the vertices in this path are dominated by 

two points. Hence V is not a ykdsd - set, a contradiction. So k = 1. 

Hence, the theorem. • 

2.2.9. Observation: 

If G is connected and if diam (G) < k then ykdsd = 2. 

2.2.10. Definition: 

Let G = (V, E) be a graph. Let u e V (G). Then k - degree of u is 

defined as k - deg (u) = | {v e G: 1 < d (u,v) < k} | 
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2.2.11. Notation: 

Ak = max { k - deg u: u G V} 

8k = min { k - deg u: u e V} 

Dk(u) = {vGG: l<d(u,v)<k} 

L>wk (u) = { v G G: 1< d (u,v) < k and deg u > deg v} 

The sk - degree (u) is defined as |Dwk(u)| 

Ask = max { sk - deg u: u e V} 

8sk = min { sk - deg u: u G V} 

2.2.12. Definition: 

Two points u,v are said to be k - adjacent if d (u,v) < k. 

2.2.13. Theorem: 

Ykdsd (G) = 2 if and only if there exists two non k- adjacent vertices 

yi and y2 such that k-deg yi = k-deg y2 = n-2 and sk-deg yi = Ask or 

sk-deg y2=Ask. 

Proof: 

Let there exists yi and y2 satisfying the hypothesis. Let 

D = {yi,y2}. Let x G V - D, since k-deg yj = k-deg y2 = n-2, x is 

k-adjacent to both yi and y2. Also since sk-deg yi = Ask or 
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sk - deg y2 = Ask we get that deg x < deg yi or deg y2. So D is a kdsd-set. 

Since |D| = 2, D is a ykdsd -set. Conversely Let D = {yi,y2} be a ykdsd -set. 

Every point in V - D is k- adjacent to both yiand y2. Therefore 

k-deg yi > n-2 and k-deg y2 > n -2. Also deg x < deg yi or deg y2. 

Suppose sk-degree yi and sk - degree y2 are less than Ask. Then there 

exists a x e V-D of sk-degree Ask. Therefore D is not a kdsd -set, a 

contradiction. So sk- deg yi = Ask or sk-deg y2 = Ask. • 

2.2.14. Definition: 

Let G be a graph with no k-isolates. Let ueG. u is called a 

k-isolate if for every v^ueG,d(u,v) > k. 

2.2.15. Theorem : 

Let G be a graph without isolates. Let there exists a ykdsd -set 

which is not k-independent. Thenyk+1 <ykdsd. 

Proof: 

Let D be a ykdsd - set which is not k-independent. Then there 

exists xeD such that x is k-adjacent to some point of D. 
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If Dk(x) n {V-D} = ty then as G has no k- isolates, Dk (x)nD ^ (j). 

Hence D - {x} is a k- dominating set. So Yk(G) < |D-{x}| = ykdsd (G)-l 

Soyk+l <Ykdsd-

If Dk (x) n {V-D} * <() then for any y e (V-D) n Dk (x), there 

exists a z G D such that z is k- adjacent to y. Since x is k- adjacent to 

some point of D, D - {x} is a k - dominating set and hence 

Yk(G)<|D-{x}| = Ykdsd(G)-l.HenceYk+l <Ykdsd. • 

2.2.16. Remark: 

The bound is sharp; For in G = 

Here Yk (G) = 1 and Ykdsd (G) = 2. 

2.2.17. Remark: 

Let G have no k-isolates. Let D be a Ykdsd - set. Suppose D is 

k-independent and there exists a subset S of D with |S| > 2 such that 

(i) Dk (S) c Dk (D-S) 
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(ii) A subset T of V-D such that |T| < |S|, Dk (T) 2 S then 

Yk < Ykdsd. For T u (D-S) is a k- dominating set and 

yk < |T u (D-S)| < |D| = ykdsd Consider the graph : 

U\ "2 "3 

V] V2 V3 V4 

Here yk - 2, ykdsd = 3, D = {ui,u2,u3} S = {ubu3},T = {v2}. 

{ui,u2} is ayk- set and {ui,u2,u3} is a ykdsd - set. 

2.3. Complement graphs in Dom-Strong domination : 

2.3.1. Definition: 

Let G = (V, E) be a graph. The complement G of G is the graph 

with vertex set V (G) such that two vertices are adjacent in G if and only 

if they are not adjacent in G. 

2.3.2. Remark: 

Ydsd : dsd - number of G. So let us assume that yM denote the 

dsd - number of G . 
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2.3.3. Remark: 

Let x and y be the vertices of a graph G such that 

d (x,y) = diam G > 3. There is no vertex in G adjacent to both x and y. 

Then every point in G is adjacent to both x and y. 

2.3.4. Observation: 

A graph G has dd = 3, (dd: double domination) if and only if there 

exists vertices u,v,w e G such that deg u = deg v 2(«-3) 

and deg w = •< 
(deg u) - 1, if 2 (n - 3) =2 (mod 3) 

(deg u) - 2, if 2 (n - 3) = 1 (mod 3) 

2.3.5. Observation : 

ydsd(Kn)+^(Kn) = n+l 

Since ydsd (Kn) = 2 and y^ (Kn) = n - 1, we have the result. 

2.3.6. Remark : 

A point x g V - D if 

(i) x is adjacent to atmost one point. 

(ii) deg x > deg y, for every y * x. 
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That is if 

(a) x is a pendant vertex or 

(b) x is a strong vertex. 

2.3.7. Theorem: 

Let G be a connected graph. Then every vertex of G is either 

pendant or strong if and only if ydsd (G) = n. 

Proof: 

Let ydsd (G) = n. Suppose there exist a vertex v which is neither 

pendant nor strong then deg v > 2 and in N (v), there exists u such that 

deg v < deg u. So V - {v} is a dsd set, which is a contradiction. (Since 

Ydsd (G) = n). Hence every vertex of G is either pendant or strong. 

Conversely suppose every vertex of G is either pendant or strong. Then 

G is a star, because if x is a strong vertex then any neighbor of x is not 

strong, in such a case the neighbor is pendant. Hence ydsd (G) = n. • 
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2.3.8. Result: 

Let n > 3 and Ydsd (G) = n then ydsd (G) + y^ (G) = n +2. 

Proof: 

Since Ydsd (G) = n, G is a star. Hence G contains a complete graph 

and an isolated point, so y^ (G) = 2. Therefore 

Ydsd (G) + ^ (G) = n +2. 

2.3.9. Result: 

Ydsd(G)+ 7Z(G)< n+2. • 

Next we examine the effects on ydsd (G) when G is modified by 

deleting a vertex. 

2.3.10. Definition: 

Let G = (V,E) be a simple graph and let V = V°uV+uV" 

Define V ~= {v e V: Ydsd (G-v) < Ydsd (G)} 

V°= {v eV: ydsd (G-v) = Ydsd (G)} 

V+= {v e V: Ydsd (G-v) > Ydsd (G)} 

2.3.11. Definition: 

(i) LetG = Ki,n 

Let u be the centre and v1? v2 —vnbe the pendant vertices. 
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u 

Vi V2 Vn-1 Vn 

Then Ydsd (K U -Vf) < Ydsd (Ki>n) 

(ii) Let G = Kn. Then 

Ydsd (Kn -u) = 2 = ydsd (Kn) for any u e V (Kn), where n > 3. 

(iii) Let G = Wn+1 

Ydsd (Wn+i-u) > Ydsd (Wn+1), 

if n is odd and n > 9 and u = n+1 is the centre of the wheel. 

2.3.12. Definition: 

Let G = (V, E) be a simple graph. 

Let v e V. Let T be ydsd set of G-v, define 

ST = {u: u e V-T, u v e E (G), degG v < degG u, degG-v x < degG-v u 

31 



for all XGN (U) n T, v is not adjacent to those vertices yeN (u) n T 

such that degc-v y = degG-v u}. 

(In this case T u {v} is not a dsd set of G, since vertices in ST will 

not be dom strong dominated by Tu{v}). 

2.3.13. Illustration: 

G G-5 

1 1 

{1,2,4, 6,5} is a ydscj set of G. 

T = { 1,4,6} is a ydsd set of G-5. 

ST= {2} 

Tu {v} is not a dsd set of G. 

But Tu {v}u ST is a dsd set of G. 
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2.3.14. Illustration: 

G-6 

{2, 3,5,6,7} and {2,3,4,5,7} are dsd sets of G. 

T = { 1,5,7,2} is a yasd set of G-6. 

Tu {v} = {1,5,7,2,6} is not a dsd set of G. 

Here ST = {3,4} 

Therefore Tu {v}u ST = { 1,2,3,4,5,6,7} is a ydsd set of G. 

2.3.15. Definition 

Let D be a subset of V and let veD. The Private neighbor of v 

with respect to D denoted by pn [v,D] is defined by 

pn[v,D] = N[v]-N[D-{v}]. 
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2.3.16. Definition : 

The strong private neighbor of v denote by pns[v,D] is defined by 

pns [v, D]=NW [v]-Nw[D- {v}] where 

Nw(x) = {yGV: yeN(x) and degy < deg x } 

2.3.17. Theorem : 

Let G = (V,E) be a simple graph. Let v e V " , Let for a YdSd set T 

of G-v, ST = (]). Then there exist a ydsd set D of G such that 

pn [v,D] = {v} or pns [v,D] = {v} or |N (v) n D| = 1, (In fact D =Tu {v} 

satisfies this property). 

Proof: 

Let v e V ~. Then Ydsd (G-v) < Ydsd (G). Let T be a Ydsd set of 

G-{v} such that ST= <J>. Let D =Tu {v}. Then D is a dsd set of G. 

Therefore Ydsd (G) < |T| +1 

Since Ydsd (G) > Ydsd (G- v) = |T|, 

We get Ydsd (G) = |T| + 1. 

Since T is not a dsd set of G, either, 

(i) T n N (v) = <|> (or) 

(ii) |N (v) n T| = 1 or |N (v) n T| > 2 and Ns(v) n T = <|) 
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Suppose (i) holds: 

Suppose T n N ( v ) = f Then v £ N [T] 

Therefore v eN [v] - N [T] 

Therefore v epn [v,D] (Since pn [v,D] = N [v]-N [D - {v}] 

= N[v]-N[T]) 

Suppose u ^ v and u epn [v,D]. Then u eN (v), u £ N [T]. 

Therefore u £ T. 

Since u ^ v, u e G - {v}. Since u g T and T is a dsd set of G - v, 

there exists Vi, v2 e T such that vj dominates u and v2 strong 

dominates u. 

Therefore u e N (vO and u e Nw(v2). 

Therefore u eN (T), a Contradiction 

Therefore pn [v,D] = {v}. 

We have pns [v, D] = Nw [v] - Nw [D-{v}] 

= Nw[v]-Nw[T] 

Since TnN (v) = (J), vgNw [T] 

Therefore veNw [v] and v£Nw [T] 

Therefore vepns [v,D]. 

Let ueNw(v) and u gNw [T]. 
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Now u^T (If UET, then u eNw(v), implies u eN (v), 

so we get that TnN (v) * (j), a contradiction to (i)) 

Since u ^ v, ue G - {v} and 

Since u£T, there exists vh v2 e T such that 

V! dominates u and v2 strong dominates u. 

Therefore u e Nw (v2) 

Therefore u GNW (T), a contradiction, 

Therefore pns [v,D] = {v}. 

Suppose (ii) holds: 

That is |N(v)nT| = 1 or |N(v) n T| > 2 and Ns(v) n T = <|> 

Let |N (v)nT| = 1. Therefore |N (v)nD| = 1 

Suppose |N(v) n T| > 2 andNs(v) n T = ^ 

Thenv0Nw[T]. 

(For: Suppose ve Nw [T]. Then there exist a ueT such that uveE 

and deg v < deg u, therefore ueNs (v) and u e T , therefore 

ueNs (v) n T Hence Ns(v) n T / f . a contradiction) 

Therefore ve Nw [v] and v£ Nw [T] 

Therefore ve Nw [v] - Nw [T] 

SoveNw[v]-Nw[D-{v}] 
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Therefore v e pns [v,D]. 

If x epns [v,D] and x * v then x e Nw (v) and x g Nw [T] 

Therefore x £T. So there exists vb v2 eT such that Vi dominates x 

and v2 strong dominates x 

Therefore x e N w (v2). 

Therefore x e Nw [T], a Contradiction. 

So pns [v,D] = {v}. Hence the theorem. • 

2.3.18. Theorem : 

Let veV+. Then v is not an isolate of G, and v is not a pendant 

vertex of G. 

Proof: 

Suppose v is an isolate of G. Let D be Ydsd set of G. Then veD and 

D- {v} is a ydsd set of G-v. 

Therefore Ydsd (G-v) = |D|-K|D| = ydsd(G). 

ve V", a contradiction. 

So v is not an isolate of G. 

Suppose v is a pendent vertex of G. Let D be a Ydsd set of G. Then 

VGD. Let u be the support of v. Then (D-{v}) u {u} is a dsd-set of G-v. 
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Therefore Ydsd(G-v) <|D| = Ydsd(G). So v£ V+, a contradiction 

Hence v is not a pendant vertex of G. 

2.3.19. Theorem : 

Let veV+. Then v belongs to every ydSd set of G. 

Proof: 

Suppose there exist a ydsd set D of G such that v£D. Then D is a 

dsd set of G-{v}. So Ydsd(G-v) <|D| = Ydsd (G). So v£V+, a contradiction. 

So v belongs to every ydsd set of G. • 

2.3.20. Theorem: 

Let veV+. Then no subset of V-N[v] with cardinality Ydsd (G) dom 

strong dominates G-{v}. 

Proof: 

Suppose there exist a subset S of V-N[v] with cardinality Ydsd (G) 

dom strong dominates G- {v}. 

Therefore: Ydsd(G-v) <|S| = Ydsd(G). Then v£V+, a contradiction . • 

• • • 
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CHAPTER - III 

In this chapter we determine the conditions of a minimal dsd —set, 

excellent dsd — sets and split dsd sets, dsd - domatic concept is also 

introduced. 

3.1 Characterization of minimal dom-strong domination : 

3.1.1. Observation: 

Any superset of a dom-strong dominating set is a dom-strong 

dominating set. Hence dom-strong domination has super hereditary 

property. 

Hence a subset D of V(G) is a minimal dom-strong dominating set 

if and only if it is a 1-minimal dom-strong dominating set. 
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3.1.2. Theorem: 

Let G = (V, E) be a simple graph. Let D c V be a dom-strong 

dominating set of G. D is a minimal dom-strong dominating set 

if and only if for every u e D one of the following holds: 

(i) u is a pendant vertex of G. 

(ii) u is an isolate in (D) or a strong isolate in (D) or 

| N ( u ) n D | = l. 

(iii) there exist a vj e V- D such that N (v^ n D = {u} or there exist 

a v2 e V- D such that Ns (v2) n D = {u}. 

(iv) there exists a v e V- D such that u e N (v) and |N (u) n D| = 2. 

Proof: 

Let D be a minimal dsd set. Let u e D. suppose u does not satisfy 

(i) to (iv). Then u is not a pendant vertex, so |N (u)| > 2. Also 

N ( u ) n D ^ a n d N s ( u ) n D ^ a n d |N(u) n D| >2. 

Since u does not satisfy (iii) for every v te V-D, if ueN (vi) n D 

then there exist w * u such that w e N (v^ n D. Also for every 

v2 e V-D, if ueNs (v2) n D, then there exist w' ^ u such that 

w' e Ns (v2) n D. Consider D - {u}. Let x e (V-D) u {u}. Suppose 
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x = u, Since N (u) n D * (j), Ns (u) n D * (j), and |N (u) n D| > 2, we get 

that D - {u} dom-strong dominates u. 

Suppose x ?t u. Then x e V-D. Therefore there exists yi,y2, e D, 

Yi ̂  y2 such that yi e N (x) n D and y2 e Ns (x) n D. If u ^ yt and 

u ^ y2 then D- {u} Dom-strong dominates x. Since u does not satisfy 

(iv), we get that if u e N (v) for any v e V - D then |N (v) n D| * 2. 

Since D dom-strong dominates v, | N (v) n D | ^ 1. 

Therefore |N (v) n D| > 3. 

Suppose yi ^ u. Then u e N (x). Therefore |N (x) n D| > 3. So 

there exist w e N (x) n D, w ^ u and w ^ y2. Therefore D-{u} 

dom-strong dominates x. 

Suppose y2 = u. Then u e Ns (x) n D. c N (x) n D. So 

|N (x) n D| > 3. Therefore there exist w <= N (x) n D, w * u and w ^ yL 

Therefore D-{u} dom-strong dominates x. So D-{u} is a dsd-set, a 

contradiction, since D minimal by assumption. Conversely, to show that 

D is minimal dsd-set, it is enough if we prove that D is a 1- minimal 

dsd-set. 

Let D be dsd-set. Suppose ueD satisfies one of the following 

conditions. Consider D-{u}. If u satisfies (i) then D-{u} is not a 
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dsd-set. If u satisfies (ii) then D-{u} is not a dsd-set. Similarly if u 

satisfies (iii) or (iv) then also D-{u} is not a dsd-set. Hence, D is the 

minimal dsd set. 

Hence the theorem. • 

3.1.3. Note: 

There does not exists vi, v2e D with vi ̂  v2 such that v\ u, v2 u e E, 

d (v2) > d iyx). 

3.1.4. Note: 

For any weV-D, there exist vj * u , vi eD such that vi eN(w) and 

v2 e D, v2 * u, v2 * V! such that v 2 eN (w) and d (u) > d (w) is not true. 

3.1.5. Remark: 

Let H be a spanning subgraph of G. Then Ydsd (H) > Ydsd (G). 

For: any dsd set of H is also a dsd set of G. 

3.1.6. Remark: 

Let Gx = (Vi,E0 and G2 = (V2, E2) be two graphs. G!+G2 is 

defined as a graph with vertex set ViU V2and edge set 

Ei u E2 u {uv/ueVh ve V2} 

Let |vi| = pi>2 and |v2| = p2>2. 
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Case (i). Let A (G,) = A (G2) < min {p,-2, p2-2} 

Subcase (i): Suppose pi < p2. A point u of degree A (GO in Gi has 

degree A (G2) + P2 in Gi +G2. Hence u strong dominates all points of G2. 

Consider a ys- set of Gi. Clearly ys > 2. Then this set is a ydSd
_ set 

for G,+ G2. So ydsd (Gj+ G2) = ys(Gi) or ys(Gi) + 1. According as a 

ys- set of Gi is a dsd set of Gi or no ys- set of Gi is a dsd set of Gj. 

Similar proof for p2<pi-

Subcase (ii) : pi = p2. Then take a point u in G] of degree A (Gi) in 

Gi and a point v in G2 of degree A (G2) in G2. Then {u,v,u',v'} with 

u'eV(Gi) and v' eV (G2) is a dsd-set for Gi+G2. Therefore 

Ydsd(G,+G2) = 4. 

Case (ii): let A (Gi) = pi-1 < A (G2). Then a point u with degree 

Pi-1 in G] has degree pi + p2 - 1 in Gi+G2. If there are two vertices of 

degree pi-1 in Gi or if there exist a point in G2 of degree p2-l in G2 or if 

there exists two points of degree p2-l in G2 then ydsd (G1+G2) = 2. 

Suppose there exist a unique point of degree pi-1 in Gt and no 

point of degree p2-l in G2 then {u,v',u'} is a dsd set of Gi+G2 and hence 

Ydsd(G1+G2) = 3. 

Case (iii) A (G2) = p2~l, Similar proof as in case (ii) 
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Case (iv): A (G,) < p , - 2, A (G2) < p 2 - 2 

Consider Max { A (GO + p2, A (G2) +p i}. 

Suppose Max {A (G,) +p2, A (G2) +p,} = A (Gi) +p2. Then a point 

u of Gi, of degree A (Gi) in G,, strong dominates all points of G2. 

Let A = {ui= u, u2,—Uk} be a ys-set of Gj. Then 

Ydsd(Gi+G2) = Ys(G2) or ys (G2) +1. According as a ys- set of Gi is a dsd 

set of Gi or no ys - set of Gi is a dsd set of Gi. 

3.1.7. Remark: 

For any positive integer n > 2, there exist a graph G such that 

Ydsd(G) = n. (TakeG = Kmin(m>n). Then ydsd (G) = n) 

3.1.8. Remark: 

For a cube Qn: when n=l, Qj = K2 and hence Ydsd(Qi)=2. 

When n=2, Q2 = C4 and hence ydsd (Q2) = 2. 

3.1.9. Theorem: 

Let G be (p,q) graph. Let u be a vertex G of degree A (G). If u 

satisfies the property that for any veN (u), N (v) n (V-N [u]) * (j) then 

ydsd(G)<p-A. 
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Proof: 
Let D = V-N (u). Then for any veV-D, v is strongly dominated 

by u. Also by hypothesis there exist w & u in V- D such that v is 

adjacent to w. Hence D is a dsd set. 

So Ydsd(G) < |D| = p-A(G). • 

3.1.10. Observation : 

For a star Ki>n, A = n. p-A= (n+1) - n = 1 and Ydsd (Ki,n) = n +1. 

Soydsd(K1)n) is different from p-A. So Ydsd (Ki,„) > p-A. 

3.1.11. Observation : 

We find examples for which Ydsd< p-A and Ydsd= P~A. 

Consider the graph: 

K2,4 

Here ydsd = 2. Also p =6, A = 4, so p - A = 2. Hence Ydsd - p-A. 
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Consider the graph: 

A = 4, p = 9+0 (H) with A (H) < 4, Ydsd = 5. p-A = 5+0 (H). 

So Ydsd < 5 + 0 (H). Hence ydsd < p - A. 

3.1.12. Observation: 

The condition in the above theorem is not sufficient. That is if 

ydsd (G) < p - A then the following need not be true. 

"There exist a vertex u of degree A such that for any 

v e N (u), N (v) n (V- N [u]) * ()>". 

For: Consider G: 

2 3 4 5 9 

p= 9, A= 4, so p-A = 5. 

{1,2,6,7,8} is a dsd-set. Thus ydsd = p - A = 5. 

But 2 e N (1) and 2 is not adjacent to any point of V- N [1]. 
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3.1.13. Proposition: 

/ > - | + y ^ ^ ( G ) , where G is a (p,q) graph and q0 = min q ((D)) 

D e {minimal dsd sets of G}. 

Proof: 

Let D be a minimal dsd set of G. Then for any point u e V-D, 

there exist atleast two edges from u to D and hence there exist atleast 

2 | V-D| edges from V-D to D. Then the number of edges of G namely, 

q > 2 | V - D | + q0 

= 2 |V | -2 |D | + q0 

o r 2 | D | > 2 | V | - q + q0 

so 2 |D| > 2p - q + q0 

or |D|> P-U^ 

or y^{G)> P-U^ 

wp-U^YviG), 
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3.1.14. Remark: 

For Kbn: ydsd = n+1, p = n+1, q = n, q0= n. 

So p-± + i*± = n + \-- + - = n + \ = ydsd 

Thus the lower bound is attained. 

3.1.15. Theorem: 

For any (p,q) graph G with ydsd (G) = a, a=2 (p-q) if and only if 

G=a-K2. 
2 2 

Proof: 

Let a = 2 (p-q). 

Suppose G has t components. Then 2t < ydsd (G) = a 

Suppose 2t < a. 

q ( G ) > p - t > p - | . 

(or) 2 q > 2 p - a 

(or) 2 p - a < 2q 

(or) 2 p-2q < a implies that 2 (p-q) < a. 

(or) a > 2 (p-q) a contradiction, since a = 2 (p-q). 
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Then G has exactly - components. 

Let Gi,G2, Ga be the components of G. 
2 

Claim: each G; is a star. 

Suppose Gi is not a star. Since Gi is connected and not a star it 

follows that diam Gi > 3 or Gi is a graph having a cycle such that 

Ydsd (Gi) = 2. 

Let Gi be a graph with diam > 3. Then ydsd (Gi) > 3. 

So ydsd (G) = J>(G,) ^ {~A +1 > ydsd(Gt),a contradiction. 
1=1 V 2- J 

If Gi is a graph having a cycle such that ydSd (Gi) = 2 then 

q (Gi) > p (Gi) - 1 . (Since Gi is having a cycle.) 

q(G) = q{Gl) + fjq(Gi) 
i=2 

>p(Gl)-\ + fj(p(Gi)-\) = p-^ 
i=2 

so q > p — implies that 

— > p-q a contradiction. 
2 
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So each Gi is a star. 

Since ydsd (Gi) = 2, Gi is K2. Thus G = -K2. 

3.1.16. Proposition: 

r~(® > 2p 
A + 2 

Proof: 

Every vertex in V-D contributes 2 to the degree sum of vertices of 

D. So 21V - D \< ]T d(»0 where D is a dsd set. 
ueD 

S O 2 | F - J D | < 5 > ( K ) < ^ A 

(o r )2 |F -D |<^A 

(or) 2(|F|- | JD|)<^A 

(or)2Jp-2r^<r(fedA 

(or )^ (A + 2)>2;7 

( o r ) ^ r f > - ^ -
A + 2 

(or)/Ad(G)> 2P 
A + 2 
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3.1.17. Remark: 

For Kn, ydsd (Kn) = 2. 

lp_ 
A + 2 

In 
n + \ 

2, 

that is ydsd 
lp_ 

A + 2 

So the bound is sharp. 

3.1.18. Proposition: 

For any given integer n, there exist a graph G with 

Ydsd (G) -
lp_ 

A + 2 = n. 

Proof: 

LetG = K h n + 1 , n > l . 

Here Ydsd (G) = n+2 

r 2P 
A + 2 

= 

•^ 

~2{n-\ •2)-

n + 3 

"2(« + 3)-2"_ 
n + 3 

7 dsd (G)- \ 2 j 

AH 

~2n + 4~ 
n + 3 

=[2- 2" 
n + 3 

P = « + 2 

= 

- 2 

2« + 6-2 
n + 3 
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3.1.19. Definition: 

A subset D of V is Dom- strong independent if 

(i) D is independent. 

(ii) for every point u of D there exists vhv2 e V-D such that vi is 

adjacent to u and v2 strong dominates u. 

Pdsd denote the maximum cardinality of such a set D. 

If no such a set exists then Pdsd= 0-

3.1.20. Proposition: 

Ydsd ^ P - Pdsd + Po, where p0 is the number of isolates. 

Proof: 

If Pdsd = o then ydsd < p + p0- Let G' = G - {isolates of G}. For G' 

there exists a pdsd - set D and hence V -D is a dsd set. 

So ydsd (GO < |V (G1) -D| = (p - Po) - Pdsd (GO 

Now Ydsd (G) = Ydsd (GO + Po 

^ (p-Po)-Pdsd(GO + Po 

= p - Po - (Pdsd (G) - Po) + Po 

= P - Pdsd (G) + Po 
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So YdSd (G)<p-pd s d(G) + p0 

Hence the result. • 

3.1.21. Theorem: 

Let G be a graph. Then ydsd (G) = n if and only if every 

component of G is a star. 

Proof: 

If every component of G is a star then ydsd (G) = |V(G)| = n. 

Conversely suppose ydsd (G) = n. Suppose there exist a component of G 

which is not a star. Let H be the component. Then H is a connected 

graph which is not a star. Let u be a point of degree A in H. Let 

vi,v2 vA be the points of H adjacent to u. If each v; is pendant then H is 

a star, a contradiction. Therefore there exist a vertex v; adjacent to u 

which is not pendant. Let Vibe adjacent to w ^ u. Then V (H) - {vj} is a 

dsd set. Therefore ydsd (H) < |V(H)| - 1. So ydsd (G) < n - 1, a 

contradiction, since ydsd (G) = n. Hence every component of G is a star. 
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3.1.22. Theorem: 

Let G be a graph. Then ydsd (G) < n - A +k,where k is the number 

of pendant vertices in G. 

Proof: 

Let u be a point with degree A. Let vhv2,... vA be the neighbors of 

u. Let vbv2,...vs(s < A) be the points in N (u) which are pendant vertices. 

Then by theorem 3.1.21, ydsd (G) < n - (A -k) = n - A +k. • 

3.1.23. Remark: 

Let G be a graph with maximum degree A. Let u be a point of G 

of degree A with s pendant neighbors. Then ydsd (G) < n - A + s 

Proof: 

By proceeding as in theorem 3.1.22,we get ydsd < n - r, 

where r = A-s. So ydsd (G) < n - A +s. • 
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3.1.24. Theorem: 

Let G be a graph. Then ydsd < n - - (A - s +t). 

Proof: 

Let u be a point of degree A. Let vhv2,.. .vA be the neighbors of u. 

Let V], v2...vs, (s < A) be the points in N (u) which are pendant vertices. 

Let {ui, u2...ut} be the T points which have adjacent points in 

V-N[v] (= S). Then S u {v, v,, v2...vs} u D is a dsd set of G where D 

is a minimum dominating set of 

{N{v)-{vl,v2,....vs,ul,u2, j/,}) 

1 
- SO r d W ( ( / )^5 |+s + l + -|JV(v)-{VpV2...vJ,M1,M2,..j<<}| 

= H - A - l + s + l + - ( A - s - f ) 

= n-A + s + -(A-s-t) 
2 

Sordsd(G)<n-^(A-S + t) 
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3.1.25. Remark: 

For any graph G, 

A < 2n - 2 ydsd + s - 1 

That is A < 2n - 2 ydsd + k, where k is the number of pendant 

vertices of G. 

3.1.26. Corollary: 

When G is a star K1>n, the equality is reached. 

Here k = n and 'n! = n+1 

So A < 2n - 2 ydsd + k implies that 

A<2(n+l ) -2 (n+l ) + n = n. 

.-. A = n. 

3.1.27. Corollary: 

WhenG = K n ,n>3. 

k = 0, 'n' = n. A = n - 1 . 

So A<2n-2y d s d +k gives 2y d s d <2n-A+k 

« A + k 
So^,<«—— 

„ ^ (n-l) + 0 
Hence /did<n-i—£— 
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3.1.28. Theorem: 

Let G be a graph with 5 (G) > 2. Then G has atleast two minimal 

dsd sets. 

Proof: 

Since 8 (G) > 2, |V(G)| > 3. Also G has atleast two non-strictly 

strong vertices say x,y. Then V-{x}, V-{y} are dsd sets of G. Let D,D' 

be minimal dsd sets of G contained in V-{x} and V-{y} respectively. 

Then D ^ D'. Hence the theorem. • 

3.1.29. Corollary: 

If G has a unique minimal dsd set then G has a pendant vertex or 

G=^". • 

3.1.30. Theorem: 

A graph G has a unique minimal dsd set if and only if every 

non-strong vertex of G is either a pendant vertex of G or is adjacent to a 

strong vertex of G. 

Proof: 

Suppose G has a unique minimal dsd set. Suppose u is a non 

strong vertex which is neither a pendant nor adjacent to any strong vertex 
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of G. Then clearly d(u) > 2. Therefore V-{u} is a dsd set containing a 

minimal dsd set say D. Since u£D and since D is a dsd set there exists 

vhv2e D such that uvi,uv2eE (G) and d(v2) > d(u). Since d(u)>2, d(v2)>2. 

By hypothesis v2 is not a strong vertex. Therefore V-{v2} is a dsd set 

containing a minimal dsd set say D\ Since V2GD and v2£D', D ^D'. 

Therefore there exists two minimal dsd sets, a contradiction. Conversely 

suppose every non-strong vertex of G is either a pendant vertex of G or is 

adjacent to a strong vertex of G. Suppose Di and D2 are two minimal dsd 

sets of G. Let ueDj- D2. Then u cannot be pendant and u cannot be 

strong, since every dsd set contains all pendant and all strong vertices. 

Therefore d (u) > 2 and u is adjacent to a strong vertex v of G. Since Di 

is a minimal dsd set there exist vi in V-Dj such that N(vi)nD!= {u} or 

there exist a v2 in V-Dj such that Ns(v2) n Dj = {u} where 

Ns(v2)={xeV7xveE(G) and d(x) > d (v2)}. Suppose there exist a vi in 

V-Di such that N(vi)nD!= {u}. Therefore Vi is neither a strong vertex 

nor a pendant vertex. Therefore there exist we V(G) such that w is strong 

and vi is adjacent to w. But weDi. So N(vi)nDi3{u,w}, a 

contradiction. Suppose there exist a v2 e V-Di such that 

Ns(v2)nDi= {u}. Since v2 £ D b v2 is neither pendant nor strong. Arguing 
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as before, we get a contradiction. SoD1-D2=<t>. Hence D ^ D2. So G 

has a unique minimal dsd set. • 

3.1.31. Theorem: 

For any graph G, 

Ydsd (G)_1 + yt (G )_1 < 1, where yt (G) demote the total domination 

number of G. 

Proof: 

Case(i): Suppose G has a full degree vertex. 

Then Yt (G) = oo. y ^ G ) " ^ yt(G)-lZ ^ + - = ^<1. 

2 oo 2 

Case (ii): Suppose G has no full degree vertex. 

Then yt (G) > 2. So Tdsd (G)_1 + Yt (G )_1 < 1. • 

3.1.32. Theorem : 

Ydsd (G)_1 + yt (G )_1 = 1 if and only if G= ~K~2. 

Proof: 

Suppose G= K2. Then 

Ydsd (Gf1 + Yt (G Tl = 1 • Conversely suppose ydsd (G)-1 + yt( G )_1 = 1. 

Therefore ydsd (G) = 2 = yt (G). Suppose |V(G)| > 3. Since ydsA (G) = 2, 

there exists u,v such that uv£E (G) and deg u = deg v = A = n-2 > 1. So 
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G is disconnected containing {u,v} as a component. So yt (G) > 3. 

Hence ydsd (G)"1 + yt (G)"1 < -+-<l, a contradiction. So |V(G)| < 2. 

Clearly |V(G)| > 2. Hence |V (G)| = 2. Hence G = T2. • 

3.1.33. Theorem: 

For any graph G, ydsd (G)"1 + yt (G )_1 = - . 

Proof: 

Since ydsd (G) > 2, ydsd (G)"1 + yt (Gf1 = ^. if and only if 

Ydsd (G) = 2 and yt (G) = oo. That is if and only if G has a full degree 

vertex and there exists u,v such that uv^E (G) and deg u=deg v=n-2=A. 

Since G has a full degree vertex, A = n-T, a contradiction. • 

3.2. Excellent dom-strong domination: 

3.2.1. Definition: 

Let G = (V, E) be a graph. A vertex v e V i s called ydsd - good if v 

belongs to a Ydsd- set. 

3.2.2. Definition: 

A graph G is ydsd- excellent if every vertex v of V(G) is ydsd-good. 
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3.2.3. Examples: 

Gj 

V3 

-o 

1 
vg 

G3 
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Vl 

V5 V6 

G4 

The graph Gi is not ydSd -excellent since the vertex v3 is ydsd - bad. 

The graph G2 is also not yaSd - excellent since the vertices v2, v3 and v4 are 

Ydsd_ bad, but it is ys - excellent. The graph G4 is y -excellent but neither 

Ydsd - excellent nor ys - excellent. The graph G3 is yaSd - excellent but 

neither y - excellent nor ys - excellent. 

3.2.4. Remark: 

The carona G ° Ki is the graph of order 2n which is obtained from 

a copy of G by adding to each vertex veV(G) a new vertex v' and a 

pendant edge uv'. Obviously G is an induced subgraph of G ° Kj and 

y(G o Kj) = ys(G o Kj) = n. So G ° Kj is y-excellent. 
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3.2.5. Proposition: 

Every graph of order n is an induced subgraph of a ydsd -excellent 

graph and its cardinality is 2n. 

Proof: 

Let G be a graph of order n. To every vertex v attach a K3. The 

resulting graph is a ydsd - excellent graph containing G as an induced 

subgraph and its ydSd is 2n. 

3.2.6. Corollary: 

There does not exist a forbidden subgraph, characterization of the 

class of ys -excellent graphs. For if there exists one, then we will get that 

G is not ys -excellent if it has a forbidden subgraph as induced subgraph. 

But then in this case there is a Ys -excellent graph containing the 

forbidden subgraph as an induced subgraph. 

3.2.7. Proposition: 

The path Pn on n vertices is dsd - excellent if and only if 

n = 0,2,4 (mod 6). 

Proof: 
Let Pn: Ui,u2,u3,.... unbe a path on n vertices. 
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Case (i): Let n = 0 (mod 3). 

Let n = 3k with k even. Then {ui,u3,....u3k-i, u3k} and 

{ui,U2,u4....u3k-2, u3k} are minimum dsd-excellent sets of cardinality 

(3k+2)/2. Hence Pn is dsd-excellent if n=3k with k is even. If k is odd 

then {ui,u3,....u3k-2, u3k} is the unique dsd set of cardinality (3k+l)/2. 

Hence Pnis not dsd-excellent if n=3k with k is odd. 

Case(ii): Let n = 1 (mod 3). Let n = 3k+l with k is even. Then 

{u1,u3,....u3k_i, u3k+i} is the unique minimum dsd-set of cardinality 

(3k+2)/2. Hence Pn is not dsd-excellent if n=3k+l with k is even. If k is 

odd then 3k+l is even. In this case {ul5u3,....u3k, u3k+i} and 

{ui,u2,u4....u3k-i, u3k+i} are minimum dsd-sets of cardinality (3k+3)/2. 

Hence Pn is dsd-excellent if n=3k+l with k odd. 

Case (iii): Let n = 2 (mod 3). Let n = 3k+2 with k is odd. Then 

{ui,u3,....u3k, u3k+2} is the unique minimum dsd-set of cardinality 

(3k+3)/2. Hence Pn is not dsd-excellent if n=3k+2 with k is odd. Ifkis 

even then 3k+2 is also even. In this case {ui,u3,....u3k+i, u3k+2} and 

{ui,u2,u4....u3k, u3k+2} are minimum dsd-sets of cardinality (3k+4)/2. 

Hence Pn is dsd-excellent if n=3k+2 with k is even. • 
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3.2.8. Proposition: 

Let T be a tree with diam T< 5. Then T is dsd-excellent if and only 

if Tis a caterpillar. 

Proof: 

Let T be a tree with diam T < 5. Let {u0, u ] v . .Uk} be a set be a set 

of vertices in a longest path in T. If k =1. then T = K2 and hence T is 

dsd-excellent. If k=2 then T is a star which is dsd-excellent. If k=3, then 

u0, u3 are pendant vertices and Ui, u2 may have any number of pendant 

vertices. That is we have a double star with centres ui, u2 and a double 

star is clearly dsd-excellent. If k = 4 then u0, u4 are pendant vertices with 

every vertex in the neighborhood of U] or u3 having degree 1. A vertex in 

the neighborhood of u2 may have degree 1 or 2 if exactly one of deg Ui or 

deg u3 greater than deg u2 and the other has degree less than or equal to 

deg u2. 

Case (i): 

u2 has a path attached to it. In this case every dsd-set contains u2. If 

deg Ui>deg u2 and deg u3>deg u4 then T is ydsd-excellent, otherwise not. 
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Case (ii): 

U2 has only pendant vertices in its neighborhood. If exactly one of 

deg ui>deg u2 or deg u3>deg u2 and the other less than or equal to deg u2, 

then T is dsd-excellent, otherwise not. 

Ifk=5: 
Case (i): 

If u2 and u3 have paths attached to them then u2 and u3 are 

necessarily present in any dsd set. If deg ui>degu2 and deg u4>deg u3 

then T is dsd-excellent, other wise not. 

Case (ii): 

Let u2 have only a pendant vertex attached to it and u3 has a path of 

length two attached to it (in case if u3 has only a pendant vertex attached 

to it). If deg u4>degu3 and deg ui=degu2 then T is dsd-excellent, 

otherwise not. 

Case (iii): 

Let u2 and u3 have only pendant vertices in their neighborhoods. In 

this case T is dsd-excellent if and only if deg ui=deg u3=deg u4. Hence T 

is a double wounded spider with exactly one arm subdivided . 

Case (iv): 

Let u2 and u3 have degree 2. Then also T is dsd-excellent 

if and only if deg ui=deg u2=deg u3=deg 114. • 
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3.3. Split Dom-Strong Domination : 

3.3.1. Definition : 

A dom-strong dominating set D of a graph G is a split dom-strong 

dominating set (sdsd-set) if V - D is disconnected. The cardinality of a 

minimum split dsd-set is denoted by ysdsd(G). 

3.3.2.0bservation : 

Let G be a non complete graph. Then there exists two points u,v 

which are not adjacent. If u and v are strong points (deg u>deg x, for all 

xeN(u) and deg v> deg y for all ysN(v)) then G -{u,v} cannot be 

complete. For if G-{u,v} is complete then there exist a point x adjacent 

to u with deg x > n-2. Hence deg u = n-1 this implies that u is adjacent to 

v, which is a contradiction, since u and v are non adjacent points. 

Therefore there exists x,yeG-{u,v} which are not adjacent. 

3.3.3. Remark : 

Assume that there are vertices which are not strong and the 

subgraph induced by the set of all non strong vertices is not complete and 

either contains a non complete component or contains atleast two non-

trivial components. Then a split dsd set exists. If we assume that 8(G)>2 

then a split dsd set exists. 
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Non-strong 

BUC=set of all non-strong vertices. 

AUB is a split dsd set. 

3.3.4. Remark : 

Suppose G is a disconnected graph containing a minimum split dsd 

set. Then any minimum dsd set is a minimum split dsd set. 

A B 

AUB=V 

Hereafter in this section we assume that G is a non-complete 

connected graph without strong isolates and 8 (G) > 2. 
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3.3.5. Observation : 

If Ys(G) denotes the minimum split domination number of G then 

7s(G)<Ysdsd(G). Likewise yss(G) <ysdsd(G), where yss(G) denote the 

minimum split strong domination number of G. 

3.3.6. Theorem : 

Ysdsd(G) < a0 (G), where a0 (G) is the vertex covering number of G. 

Proof: 

Let S be a maximum independent set of vertices in G. If |S|=1 then 

G is complete, a contradiction. Therefore |S| > 2. Suppose there exists a 

vertex u in S which is not adjacent to any vertex in V - S or adjacent to 

exactly one vertex in V - S then deg u < 1, a contradiction, since 8(G)>2. 

Therefore every vertex in S is adjacent to atleast two vertices in V-S. 

Since u is not a strong vertex and since N(u)<zV-S, N(u) contains atleast 

two points, one of which strong dominates u. Therefore V-S is a split 

dsd set. Hence Ydsd (G)<|V-S|= a0 (G). • 
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3.3.7. Theorem : 

A dsd set D of G is a split dsd set if and only if there exists two 

vertices Wi,w2eV-D such every Wi-w2 path contains a vertex of D. 

Proof: 

If there exists w1?w2 such that Wi-w2 path contains a vertex of D 

then <V-D> is not connected. So D is a split dsd set. Conversely if D is a 

split dsd set then <V-D> is not connected. So take Wj,w2 in different 

components of <V-D>. Then every w rw2 path contains a vertex of D. • 

3.3.8 Theorem : 

(i) K(G) < Ysdsd(G) where K is the connectivity of G. 

(ii) y (G) < ys (G) < ydsd (G) < ysdsd (G). 

Proof: 

(i) follows from the fact that if D is a ysdsd-set of G then <V-D> is 

disconnected. 

(ii) is obvious. • 
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3.3.9 Theorem : 

A split dsd set D is minimal if and only if for each vertex vsD one 

of the following holds: 

(i) There exist a vertex ue V-D such that N(u) nD={v} or 

N,(u) nD = {v} 

(ii) v is a strong isolate in <D> 

(iii) ((V - D) u {v}) is connected. 

Proof: 

Suppose D is a minimal split dsd set such that v does not satisfy 

any of the above conditions. Then by (i) and (ii) D-{v} is a dsd set, also 

since (iii) is not satisfied, (V-D) u{v} is disconnected. Therefore D-{v} 

is a split dsd set contradicting the minimality of D. Hence v satisfies one 

of the above conditions. Converse is obvious. • 

3.3.10. Remark : 

Any superset S of a split dsd set D with | S | < n-2 is a split dsd set. 
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3.3.11. Theorem : 

r-(0*^-A(G) + 1 

Proof: 

Let D be a ysdsd set of G. Since D is minimal, for every vertex 

veD, <(V-D) u{v}> is connected. Therefore there exist a vertex 

ueV-D such that v is adjacent to u. So V-D is a dominating set of G. 

Since |V-D| > 2, V-D is a dsd set of G. 

Therefore ydsd(G) <|V-D|<n-ysdsd(G). 

B u t Y U G ^ G ) ^ . 

Hence Ysdsd(G) < n-ydsd(G) 

<n— 
A + l 

«A 

A + l 

So Y s d s d (G)<-^^-

Hence the theorem. 
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3.4. Dsd-domatic number ddsd(G) 

3.4.1. Definition : 

Let G=(V,E) be a simple graph. The dsd-domatic number ddsd (G) 

of the graph G is defined as the maximum number of elements in a 

partition of V(G) into dom-strong dominating sets. 

3.4.2 Example : Let G = 

3.4.3. Definition : 
Here ddsd(G) - 1 

Let G=(V,E) be a graph. Let ve V(G). 

Let Ns(v) = {uev/uveE(G) and degu > degv} and 

N,[v]=N8(v) u{v}, d(v)=|Ns(v)| and 5s(G)=min {ds(v)/veV(G)} 

3.4.4. Definition 

The strong domatic number of a graph G denoted by ds(G) is the 

maximum number of elements in a partition of V(G) into strong 

dominating sets. 

73 



3.4.5. Example : 

LetG = 

Here {2,3,4}and {1,5,6,7,8} are strong dominating sets and ds(G) =2, 

58(G)=1. 

3.4.6. Proposition : ds(G) <5S(G)+1 

Proof: 

Let v be a point with ds(v)= 8s(v). Suppose ds(G)> 5S(G)+1. Then 

there exist a strong dominating set of G which does not contain any of the 

elements of Ns[v], a contradiction. Hence ds(G) <5S(G) +1. • 

3.4.7. Remark : The domatic partition into dsd sets consists of V only, 

since the pendant vertices must be in every dsd-set of G. 

3.4.8. Remark 

If G has a pendant vertex then ddsd(G)=l. Hence for a tree T, 

ddsd(T)=l . 
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3.4.9. Definition : 

Let veV(G) , v is said to be ds-isolate if d(v)<l or d(v)>2 and 

ds(v)=0. 

3.4.10. Remark: 

For any graph G, ddsd(G) <min {5 (G) +1, SS(G)+1} 

3.4.11. Observation : l<ddsd(G) < 

Consider C4: 

Here {vh v3} and {v2, v4} are the only dsd sets and 

V(C4)= {vh v3}u{v2, v4} and ddsd(C4)=2. 

ForKn: ddsd(Kn) = 
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3.4.12. Theorem : 

ddsd (G) +ddsd (G) <n+l, where dM denote dsd-domatic number of G 

Proof: 

Since any dsd-partition of G is a domatic partition of G, we have 

ddSd (G) < d(G). Therefore ddsd(G)+ d~Z(G) < d(G)+ d(G) < n+1, where 

d (G) denote the domatic partition on G 

3.4.13. Lemma 

Let P={D!p2, Dk} be a dsd-partition of V. Then k < 

Proof: Since |Dj| >2, for each i, we get k < 

3.4.14. Theorem : 

Let G be a graph with a strong isolated point or a pendant vertex. 

Then ddsd (G)+ ^d(G)< + 1 

Proof 

Since G has a strong vertex or a pendant vertex ddSd(G)=l. 

By Lemma 3.4.13, ^d(G)< 

Therefore ddsd (G)+^rf(G)< + 1. 
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3.4.15. Remark : 

If G=Kn or Kn then ddsd(G)+ d^iG) < + 1 

Proof: 

IfG = Knor Kn then ddsd(K„)= mdddsd ( K n ) = I-

Hence ddsd(Kn)+ dM(KH)z + 1 

3.4.16. Remark 

If G = K4 - {e} then ddsd(G)+ dM (G) = +1. The converse of 

the result in the Remark 3.4.15 is not true. 

3.4.17. Proposition : 

For any graph G, ddsd (G) < min {8(G) +1, 8S(G)+1}, 

(Remark: 3.4.10) 

Proof: 

Since every dsd set is a dominating set as well as a strong 

dominating set we get that every dsd-domatic partition is both a domatic 

partition and a strong domatic partition and hence ddsd (G) < d(G). But 

d(G) < 8(G) +1 and ds(G) < SS(G) +1. 

Therefore ddsd (G) < min {8(G) +1, 8S(G)+1}. • 
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3.4.18. Remark : 

Let G be a graph with 5(G) >1 and A(G)<n-2. 

Thenddsd(G)+ J^(G)<« + 1. 

Proof: 

We have ddsd(G) <5(G)+1 and <J(G) < S(G) +1 < A(G) +1. 

ddsd(G)+ JZ(G) < S(G) + A(G) + 2 

= n-l+2 = n+l (Since ^(G) + A(G) = n- l ) 

Where ^ and A represents the minimum and maximum deg 

respectively on G. 

3.4.19. Definition : 

A graph G is 

(i) strong domatically full if ds(G)= 5S(G)+1 

(ii) dsd-domatically full if either 5(G)=1 or 5(G) >2 and 

ddsd(G) = min{5(G)+l,8s(G)+l}. 
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3.4.20. Proposition : 

For any graph G, 

(i)d s(G)<-^-,<(G)> 
7S(G) n-Ss(G) 

(ii) ddsd(G) <—^—.,dlbd{G) > max ~ 
rdAG) {n-S(G)'n-Ss(

G)\ 

Proof 

Obviously ds(G) <—— and ddsd (G) <—n— . Let ScV be such 
rs(G) r*A<7) 

that |S| >n-8s(G). Let veV-S. Since |Ns(v)| >1+5S(G), we have 

Ns(v) nS ^ (|). Therefore any set of cardinality greater than or equal to 

n-8s(G) is a strong dominating set. Therefore we can take any 
n-Ss(G)_ 

disjoint subsets and each of these is a strong dominating set. Therefore 

ds(G) > 
ln-S,(G\ 

Also since any ds-domatic partition is both a domatic 

partition and a strong domatic partition, we have 

ddSd (G) > max 
n-8(G)'n-SXG)\' 
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3.4.21. Result: 

Pn is strong-domatically full for all n > 1. 

Proof: 

Let n> 4, Let V(P„) = {ui,u2, un). Then {ui,u3 } and 

{u2,u4, } are strong dominating sets, since 8s(Pn)=l. Therefore Pn is 

strong domatically full. 

When n=3, 5S(P3)=0 and P3 is the only domatic partition in the 

partition containing V. Therefore P3 is strong domatically full. Obviously 

Pi, P2 are strong domatically full. • 

3.4.22. Remark : 

Pn is dsd-domatically full for all n>l. 

3.4.23. Definition : 

A graph G is said to be strong domatically k-critical if ds(G)=k>2 

and ds(G-e) < k, for every edge e. 
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3.4.24. Remark: 

If G has a strong isolated point, then ds (G) = 1 

For: 

1 

3 

G has no strong isolates. D = {4,3} is strong dominating set of G, 

but V-D = {1,2,5,6} is not a strong dominating set of G. 

Also D! = {3,5} is a strong dominating set and V-D! = {1,2,4,6} 

is also a strong dominating set of G. 
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3.4.25. Result: Let G be strong - domatic 2- critical. Then G is strong 

domatically full. 

Proof: 

By hypothesis ds(G) = 2 and ds(G-e)=T, for every edge eeE(G). 

That is G has no strong - isolated point and G-e has a strong isolated 

point, for every eeE(G). Let e=uv. Then removal of e generates a strong 

isolated point. Therefore either u or v is a strong isolated point of G-e. 

Therefore for every point we(N(u)-{v}), deg w<deg u - 2 or for every 

point w e (N(v)-{u}), deg w<deg v - 2. So 1+8S(G) = 2 and ds(G) = 2. 

Hence 5s(u)=l or 8s(v)=l. So ds(G)=l+8s(G). Hence G is strong 

domatically full. • 

• • • 
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CHAPTER - IV 

In this chapter we introduce independent dsd, connected dsd and 

total dsd concepts among graphs, dsd-irredundance is also discussed. 

4.1. Independent dom-strong domination : 

4.1.1. Definition : 

Let G=(V,E) be a graph. A dsd set D is called an independent dsd 

set if <D> is totally disconnected. 

4.1.2. Definition : 

Let G be a graph which contains an independent dsd set. Then 

define 

idsd(G) =min {|D|:D is a minimal independent dsd set} and 

Pdsd(G)=max{|D| : D is a minimal independent dsd set} 

4.1.3. Definition : 

Let veV. Define 

fmin {|D| : D is a minimal independent dsd set containing v} 

10 if there exist no independent dsd set containing v 

max ( , \\ 
and rM(G)= fcrf(v) 

v eV 
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4.1.4. Remark : 

Not all graphs have independent dsd sets. 

(i) Kn has no independent dsd set. 

(ii) C2n (n>2) have independent dsd set, C2n+i (n>l) has no 

independent dsd set. 

(iii) P2n+i (n>2) have independent dsd sets, but P2n (n>l) does not 

have independent dsd set. 

(iv) Wn has no independent dsd set for all n>4. 

(v) Ki>n has no independent dsd set. 

(vi) Km;„ has independent dsd sets provided m,n>2. If m>n then 

there exist a unique independent dsd set namely the set of n 

vertices forming a partition. If m=n then there exist two 

independent dsd sets namely the two partitions. 

(vii) The Petersen graph has independent dsd sets. 

For ex : P : » 2 
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Here {2,4,9,10} and {1,3,8,9} are independent dsd sets. 

Henceidsd(P) = (3dsd(P) = 4. 

(viii) Fn has no independent dsd set. 

4.1.5. Theorem : 

If G has two strong isolated vertices which are adjacent then G has 

no independent dsd set. 

Proof: 

Any dsd set contains all strong isolated vertices. Hence the 

theorem. • 

4.1.6. Remark: 

If ve V(G) is such that every dsd set contains N[v] then G has no 

independent dsd set. 

4.1.7. Theorem : 

If G has a full degree vertex then G has no independent dsd set. 

Proof: 

Let u be full degree vertex in G. Suppose there exist an 

independent dsd set say D. Then |D|>2 and ugD. (If ueD then u being a 

full degree vertex is adjacent to every point of D-{u}^(j), contradicting 
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the independence of D.) Since D is a dsd set, there exist a veD which 

strongly dominates u. Hence v is a full degree vertex in D, a contradiction 

to the independence of D. Hence G has no independent dsd set. • 

4.1.8. Remark : 

For any graph G, G+ (Carona) does not have any independent dsd 

set. 

Proof: 

Let D be any dsd set. Let V(G)= {uju2 un}. Let v; be the 

pendant vertex of G+ adjacent to u;. (1 < i < n). Then {viy2 vn}<=D. 

For Ui there exist UjeD such that Uj is adjacent to Uj. Therefore there exist 

an edge UjUj in <D>. So D is not an independent dsd set. 

Hence the proof. • 

4.1.9. Remark : 

Let G=(V,E) be a simple graph. If ueV(G) is a support and every 

vertex in N(u) is either a pendant or a support then G does not have any 

independent dsd set. 
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4.1.10 Example : 

Consider the graph, 

3eV(G) is a strong isolate and N(l)cN(3). So G has no independent dsd 

set. 

4.1.11. Result: 

Let G=(V,E) be a simple graph. If ueV(G) is a strong isolate and if 

there exist veN(u) such that N(v)cN(u) then G has no independent dsd 

set. 

Proof 

Since u is a strong isolate, any dsd set D contains u. For dom-

strong domination of v, D must contain a neighbor of v other than u. since 

N(v)cN(u), <D> contains an edge. Hence the result. 
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4.1.12. Result: 

Let G=(V,E) be a simple graph. Any independent dsd set contains 

link-complete vertices. 

Proof: 

Let D be an independent dsd set. Let ueV(G) be a link-complete 

vertex. Suppose u^D. Then the two points in D which dominate u will be 

adjacent, a contradiction. • 

4.1.13. Result: 

Let G=(V,E) be a simple graph. Let ueV(G). Let either 

N[u] or Ns[u] be contained in N(v), where v is a link complete or a strong 

isolate vertex. Then G has no independent dsd set. 

Proof: 

Let D be any dsd set. Then veD. Either veDor two neighbors of 

u, one of which being strong belong to D. Hence D contains an edge. • 

4.1.14. Corollary : 

If G has at least two adjacent link-complete vertices then G has no 

independent dsd set. 
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4.1.15. Result: 

Any cycle with atleast four vertices and a chord does not have any 

independent dsd set. 

Proof: 

Let uv be a chord in a cycle Cn (n>4). Then u and v have degree 3. 

Let D be an independent dsd set. Either u or v belong to D but not both. 

Suppose UGD. Then v£D. Let w be a point adjacent to v. Then deg w=2. 

Since v£D, there is no point in D strongly dominating w, a contradiction. 

• 

4.1.16 Result: 

1. A graph G in which there exists y b y2 such that 

deg yi= deg y2=A=n-2 has an independent dsd set. 

2. Let ScV. Let S = {ui,u2,~ ur}, dj < dG(ui5 S-{u;}). Then 

(di, d2, dr) is a distance sequence of S. If S is maximal 

independent then 2<dA <3, for every i. 

3. A graph G has an independent double dominating set if and only if 

there exist a maximal independent set S for which the distance 

sequence of S is 2,2,2, 
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The above graph satisfies the condition of the hypothesis. (It has a 

independent dd-set but no independent dsd-set) 

4.2. Dsd-irredundance in graphs : 

4.2.1. Definition : 

Let G=(V,E) be a graph. A subset D of V is called a dsd-

irredundent set if for every ueD one of the following holds : 

i) u is a pendant vertex of G 

ii) u is an isolate in <D> or a strong isolate in <D> or |N(u)nD|=l. 

iii) There exist VieV-D such that N(v!)nD={u} or there exists a 

v2eV-D such that Ns(v2)nD={u}. 

iv) There exist a veV-D such that ueN(v) and |N(v) nD|=2. 
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4.2.2. Definition : 

The maximum cardinality of a maximal dsd-irredundant set is 

called upper dsd-irredundant number and is denoted by IR<isd (G). Also 

the minimum cardinality of a maximal dsd-irredundant set is called lower 

dsd-irredundant number and is denoted by irdsd (G). 

4.2.3. Definition : 

irdsd(y)= m m (PI : D is a maximal dsd-irredundant set containing v} 

„ ,_.. max c / \) 
<>L(G)=vGFfcrf(v)} 

Note that the dsd-irredundant property is super hereditary. 

4.2.4. Recall: 

Let G = (V, E) be a graph. Let D be a subset of V. Let v e V . 

Define, 

pn[v,D]=N[v]-N[D-{v}] and 

pn,[v,D]=Nw[v]-Nw[D-{v}]. 

4.2.5. Remark : 

Suppose we define the dsd-irredundant set as follows : 

DcV is dsd-irredundant if for every ueD, pn[u,D] *§ or 

pns [u,D] * <|>. Then a minimum dsd set need not be a dsd-irredundant set. 
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4.2.6. Example: 

Consider the following star : 

Here D={ 1,2,3,4,5} is the minimum dsd-set. 

pn[ l ,D]=N[l ] -N[D-{l }]H> 

pns[l,D]={l} 

pn[2,D]=({) 

pns[2,D]=(|) 

So D is not a dsd-irredundant set. 
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4.2.7. Example : 

Consider the graph, 

lp 

2 / 

3T f 

6* 5 

Here Di = {1,3,5} is an independent dsd-set. Any superset of Du is not 

independent. D2={1,3} is independent but not a dsd-set. So any subset of 

D! is not a dsd set but it is independent. D3= {1,4,6} is an independent 

dsd-set and no superset or subset of D3 is a independent dsd-set. Di and 

D3 are the only minimal independent dsd sets. 

Also i^ (2) = 0, i'„ (1) = VM (3) = ?„ (4) = V„ (5) = V„ (6) = 3 

So IL(G) = 3 . 

{1,4,6}, {2,5,6} and {1,3,5} are all dsd-irredundant sets. It shows that no 

four element set is irredundant. Hence ir^d (G) = 3 
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4.2.8. Example : 

14t 

Di= {3,5,9,10,11,12} is a maximal irredundant set. 

D2 = {1,2,4,6,7,8,9,13,14,15} is a maximal irredundant set. Similarly 

D3={1,2,4,5,9,13,14,15}, 

D4={3,6,7,8,9,13,14,15} 

D5={ 1,2,4,5,9,10,11,12} and 

D6 ={3,5,13,14,15,9} are all maximal irredundant sets. So irdSd(G) =6, 

IRdsd(G)=10, /r^(G) = 8. The set D2={ 1,2,4,6,7,8,9,13,14,15} is the only 

minimal independent dsd set. So idsd(G)=Pdsd(G)=10 and irld(G) = 10. 

Since D2 is the unique minimal dsd set, Ydsd(G)=10 = rdsd(G). 
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4.2.9. Theorem : 

For any graph G, ir (G)<irdsd (G) 

Proof: 

Let D be a maximal irredundant set of G. Then for every ueD, 

pn[u,D] (̂f). So D is a dsd-irredundant set. Therefore there exist a subset 

T of V such that D c T and T is a maximal dsd-irredundant set. Hence 

min {|D| : D is a maximal dsd-irredundant set} 

<min {jT|: T is a maximal dsd-irredundant set} 

Hence ir (G) < irdsd(G). • 

4.2.10. Example : Consider the graph, 
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Here Df= {1,4,6,7,8 } is an independent dsd-set. 

D2 = {2,3,5,8,10,11} and D3 = {1,3,4,6,78 } are maximal irredundant 

sets. 

So idsd =pdsd = i^ = Ydsd = irdsd = 5 and [dsd = Kd = IR^ = 6 

4.2.11. Theorem : 

Every minimal dsd set is maximal dsd-irredundant. 

Proof: 

Every minimal dsd set is clearly dsd-irredundant. Let D be a 

minimal dsd set. Suppose D is not a maximal irredundant set. Then there 

exist a vertex ueV-D such that Du{u} is a dsd-irredundant set. Let 

S=Du{u}. Since ueV-D and D is a dsd set, u cannot be a pendant vertex 

of G. If u is an isolate of <S> or a strong isolate of <S> or |N(u)nS[=l 

then D cannot dom-strong dominate u, a contradiction. If vb v2eV-S 

such that N(v!)nS={u} or Ns(v2) nS={u}. Hence N(vi) r\D=ty or 

Ns(v2) nD=(|), a contradiction to the fact that D is a dsd set. If u satisfies 

(iv) then for some veV-D such that UGN(V), |N(v)nS|=2. So 
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|N(v) nD|=l. Hence D does not dom-strong dominate v a contradiction, 

since D is a dsd-set. Hence D is a maximal irredundant set. • 

4.2.12. Remark : 

There exist a graph G for which irs
dsd (G) > y^d (G) . 

Consider G=P7 : 

Here {1,2,4,6,7} is the only minimal dsd set containing 2. So irdsd{P-,) = 5 

{1,3,5,7} is the only minimum dsd set. So ydsd(G)=4. 

Also irs
dsd(l) = irs

dsd(3) = irs
dsd(5) = irs

dsd(7) = 4. 

So ir>M{p1)=5 = r4U(p1)+i>rtU{P-,)-

4.2.13. Remark : 

A graph G is dsd-excellent is every point lies in a ydsd- set. If G is 

dsd-excellent then ir^iG) < y^i0)-

4.2.14. Theorem : 

For any graph G, ^ ^ < irM (G) < Ydsd (G) < lir^ (G) -1 
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Proof: 

Let irdsd(G) =k. Let S={vi,v2, vk} be a irdsd-set of G. If v; is 

neither a pendant in G nor an isolate in <S> nor a strong isolate in <S> 

then there exist u;eV-S such that N(uj)nS={u;} or Ns(Uj)nS={vj} or 

N(Ui)nS={vivJ}. Let S' = {u{, u2, uk} where Uj=Vj if v̂  is a pendant in 

G or an isolate in <S> or a strong isolate in <S>. Suppose S"=SuS' is not 

a dsd set. Then there exist weV-S" such that w is not dom-strong 

dominated by S". w may be a pendant vertex of G. Either w£N(x) for any 

xeS" or xeN(w) for some xeS" but there exist no xeS" such that 

xeNs(w) or xeNs(w) for some xeS" and there exist no yeS", y/x which 

is adjacent to w. Consider Su{w}. If w£N(x) for any x € S" then w is an 

isolate of <S"u{w}> and hence an isolate of <Su {w}>. If there exist no 

xeS" such that xeNs(w) then w is a strong isolate of <S"u {w}> and 

hence a strong isolate of <Su {w}>. If xeNs(w) for some XGS" and there 

exist no yeS", y^x which is adjacent to w then Ns (w)nS"={x}. If xeS 

then Ns(w)nS"={x}, w is a strong private neighbor of x=Vj in S. 

Therefore weS1, a contradiction. If x^S then x=u; for some UjeS'. Then 

Uĵ vj and N(uj)nS={vi} or Ns(uO nS={vi} or N(uO nS={vi,Vj}. Therefore 

Ns(w) n(Su{ui})={ui}. So either Su{w} or Su{ui} is a dsd-irredundant 
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set, a contradiction, since S is a maximal dsd-irredundant set. Therefore 

S" is a dsd set. It cannot be a minimal dsd set. For: If S" is a minimal 

dsd set then S" is a maximal dsd-irredundant set containing S which is 

maximal. So S"= S. Hence S'̂ tj). Then every element v of S is a pendant 

in G or an isolate in <S> or a strong isolate of <S>. So S"=S. Hence S=<j), 

a contradiction. Hence S" is not a minimal dsd set. Therefore 

Ydsd(G)<|S"|=2k. 

Therefore ydSd(G)<2k-1 =2iraSd(G)-1. 

So Ydsd (G) < 2irdsd (G) . Hence ^M < irM (G). • 

4.2.15. Example : 

Consider the graph, 

Here {1} is a maximal dsd-irredundant set. {1,3} is a minimum dsd set. 

So irdsd=l and idsd=Pdsd==0- Therefore there exist no independent dsd set. 
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4.2.16. Remark : 

If irdsd(G)=l then there exist a full degree vertex and hence there 

exist no independent dsd set. So idsd(G) is oo. 

4.2.17. Remark : 

If ir(G)=l then i(G)=y(G)=l. But if irdsd(G)=l then idsd(G) is oo 

and hence irdsd(G) * idsd(G). 

4.2.18. Example : 

Consider the graph, 

W Xi X2 X3 X4 

Here D= {u,v,x{rx3} is a minimum dsd set. |N(u)nD|=|{xi}|=l. 

Forx4eV-D, x4eN(v) and |N(x4)nD|=2. Similarly for x2e V-D, x2eN(v) 

and |N(x2) nD|=2. For weV-D, weN(x) and |N(w)nD| = 2. 
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Also |N(x3) nD|=l . Hence u and x3 satisfy condition (ii), v and xi do not 

satisfy (i), (ii) and (iii) but satisfy (iv). 

4.2.19. Example : Consider 

Here D= {u,v,xi, x3} is a minimum dsd set. 

<D> = 

u 
Q 

V 
O 

6 
Xl 

6 
x4 

None of the elements of D are pendant vertices. None of them are isolates 

or strong isolates of <D>. |N(u)nD|=l, |N(v)nD|=l, |N(xOnD|=l and 
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|N(x3)nD|=l N(w)nD={u^,}=Ns(w)nD and N(x2)nD={u,v}=Ns(x2)nD. 

So u has no private neighbor and hence no strong private neighbor in 

V-D. Also u satisfies condition (ii) and (iv) N(x4)= {v,x3}=Ns(x4). 

So v, x1? x3 do not have private neighbor nor strong private neighbor in 

V-D. They all satisfy condition (iv). All the vertices in D satisfy 

conditions (ii) and (iv). 

4.2.20.Remark : 

We establish these domination parameters to some 

Familiar graphs: 

1. Harary graph H4j 8 : 

Dj= {1,5,4,8}, D2={2,3,6,7} are minimum dsd sets which are not 

independent. Also D3= {2,4,6,8}, D4={ 1,3,5,7} are maximal dsd-

irredundant sets. 
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2. Harary graph H58: 

Di={0,2,4,6} and D2={ 1,3,5,7} are dsd sets. 

3. Harary graph H49: 

0 

D,- {0,3,4,7}, D2= {1,4,5,8}, D3={ 1,3,6,8} D4={2,5,6,8}, D5={0,2,4,6} 

and D6={ 1,3,5,7} are all dsd sets but none of them are independent. 
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4. McGee graph : 

D!= {2,4,6,8,3,7,9,10,12,19,23,13,16,22}, 

D2= {1,3,5,7,11,13,15,17,19,9,21,23} and 
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D3= {1,4,7,10,13,16,19,15,9,22,18,24} are all dsd sets but none of them 

are independent. 

5. Herschel graph : 

Dp={ 1,5,7,6,11} and D2={2,3,4,8,9,10} are independent dsd sets. 
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6. G (15,15): 

D,= {1,2,3,4,5,11,12,3,14,15}, D2= {1,2,3,4,5,6,7,8,9,10} 

andD3= {6,7,8,9,10,11,12,13,14,15} are dsd sets 

but not independent. 
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7. Heawood graph : 

Di={ 1,3,5,7,9,11,13} and D2={2,4,6,8,10,12,14} are independent dsd 

sets. 
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8. Franklin graph : 

Dj= {1,3,5,7,9,11}, D2={2,4,6,8,10,12} are independent dsd sets. 

D3={ 1,4,5,7,8,10}, D4= {2,5,7,8,10,11} are dsd sets but not independent. 

9. Friendship or windmill graph : 

5 
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Here Di={2,4,6,8,10,ll} and D2={ 1,3,5,7,9,11} are dsd sets but not 

independent. 

We summarize the observed values in Tabular form: 

Graph 

Harary H 4 8 

H5,8 

H4,9 

McGee 

Herschel 

G(15,15) 

Heawood 

Franklin 

Wind Mill 

Chvatal 

Tietze 

Nanogram 

ldsd 

0 

0 

0 

0 

5 

0 

7 

6 

0 

0 

6 

0 

ldsd 

0 

0 

0 

0 

5 

0 

7 

6 

0 

0 

6 

0 

Pdsd 

0 

0 

0 

0 

6 

0 

7 

6 

0 

0 

6 

0 

Ydsd 

4 

3 

4 

12 

5 

10 

7 

6 

6 

6 

6 

5 

1 dsd 

4 

4 

4 

14 

6 

10 

7 

6 

6 

6 

7 

5 

irdsd 

4 

4 

4 

12 

5 

10 

7 

6 

6 

6 

6 

5 

' ^ 

4 

4 

4 

12 

5 

10 

7 

6 

6 

6 

6 

5 

IRdsd 

4 

4 

4 

14 

6 

10 

7 

6 

6 

6 

6 

5 
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4.3. Connected dom-strong domination : 

4.3.1. Definition : 

Let G be a connected graph. Then V(G) is a connected dsd set. A 

dsd set D is called a connected dsd-set if <D> is connected. 

The minimum cardinality of a connected dsd-set is called the 

connected dsd number and is denoted by y^. 

4.3.2. Remark : 

rdsd *> Yld • If 7M = 2 then fM = 2 or 3. 

4.3.3. Observation : 

i- f* (Pn) = n 

ii-rL(C„) = n-l 

iii fM (W„) = n-2 

iv- rL (Kn) - 2 

v. rL (Kn,„) = 2 

vi- fM (T) = |V(T)| =n. 
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4.3.4. Definition : 

Let G be a graph without isolates. A dsd set D is called a total dsd 

set if for every ueD there exist veD such that u and v are adjacent. 

Every graph without isolates has a total dsd set namely V. 

4.3.5. Definition : 

The minimum cardinality of a total dsd set is called the total dom-

strong domination number and is denoted by y'dsd . 

4.3.6. Observation : 

i-rL(K„)=2 

ii-rL(Kn>n)=2 

iii-/L(Fn)=n 

iv. rL (Wn)= 

4.3.7. Remark: 

For any connected graph G, rL (G) ̂  rid (G) 

Proof : Since any connected dsd set is a total dsd set we have 

rL(^)<rL(G) • 

+i 
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4.3.8. Result: For any graph G, yJ<G)£y'M(G)zf„(G) 

4.3.9. Examples: 

i.ForKn , rdsAK„)=r'dsd{Kn)=rc
dsd(Kn)=2 

ii. ForKn)„, r« fcJ=rL(0=r«(0=2 

iii. For Ci2: 

Here 7dsd =6,y'M =8 and fM =11. So r (W(C I2)<^(C I2)<yLfe)-
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4.3.10. Remark : 

2 - Ydsd - n> a n d t n e bounds are sharp. 

For Kn; rdsd = 2 and for Kn>n; rLi=»-

4.3.11. Remark : 

j^r^r{G)<ydsd(G)<r'dsd(G)<fdsd(G) 

4.3.12. Observation : 

Let H be a spanning subgraph of a connected graph G. Then there 

is a relation between ydsd{H) and y%d{G). 

4.3.13. Examples : 

1. Let G=Ki2ji6 and H'=K2;i0 uK2,14 Let V(K2;U))=ViuV2, where 

|V2|=10 and V(K2,14)= V\vY2, where |V2'|=14. Join a point of V2 

to a point of V2\ Let H be the resulting graph. Then yc
dsd(H)=6. H is 

a spanning subgraph of G=K]2>16- So yc
dsd{G) = l3. Hence 

rM=6<yc
dsd{G) = n. 

SoyLW<rL(G) 
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2. Let G=Kn, H=Cn. Then yc
dsd{c) = 2 and fdsd{H) = n-\ 

So rld{G) 

3.LetG=K3j3 

Then H is a spanning subgraph of G. Hence yc
dsd (G) = 3 = y^ (H) 

^ yc
dsd{G) = yld{H). 

• • • 
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CHAPTER -V 

In this chapter we proved that both the double-dominating and 

dom-strong dominating sets are NP-complete. It has also proved that a 

dsd set is NP-Complete even for Bipartite graphs. Fractional concept is 

also discussed, we refer to [17], 

5.1. Complexity of double domination : 

5.1.1. Theorem : 

A double dominating set is NP-complete. 

Proof: 

A Double dominating set eNP. For let G=(V,E) be a graph, k a 

positive integer and an arbitrary set ScVwith |S|<k; It is easy to verify 

that in polynomial time, whether S is a double dominating set (dd-set). 

3-SAT instance : 

A set U ={ul5U2, un} of variables and a set C ={ci,c2, cm} of 

3-element sets called clauses, where each clause Ci contains three district 

occurrences of either a variable Ui or its complement u;. For example a 

clause might be Ci={ui,U2',u4}. 

Question : 

Does C have a satisfying truth assignment that is an assignment of 

True or False to the variable in V such that atleast one variable in each 
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clause in C is assigned the value True. Given an instance C of 3-SAT, we 

construct an instance G(C) of Double dominating set as follows : 

For each variable Uj construct a K4 with vertices labeled Ui,u/, 

Vj and v/ . For each clause Cj = {ui,Uk',u/} create a single vertex labeled 

Cj and add edges ujCj, v;Cj, Uk'Cj, Vk'Cj, u/Cj, v/Cj. 

Vl ' 

..-••"" " 2 
...•••••' « 2 7 

0s- O O 

C3 

Suppose C is a satisfying truth assignment. Let S be a subset of 

V constructed as follows: 

If Ui is true then Ui,Vj belong to S. 

If Uj is false then u^v;' belong to S. 

Claim : 

S is a double dominating set for the graph G(C). Suppose UieS. 

Then Uj,vj. eS. Therefore u/, v̂  eS and Uj',Vi' are dominated by U;,^. 

If UjGCj then Cj is dominated by Uj,Vi. Suppose Ui^S then u/eS. Also 

Vj'eS, Ui,Vj, are dominated by Ui'X. If Uj'eCj then Cj is dominated by u/, v/. 
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Since C is a truthful assignment, every Cj contains atleast one truth 

variable and Cj will be double dominated by that variable in S and the 

corresponding v-variable in S. Therefore S is a double dominating set of 

the graph G(C) and |S|=2n. Conversely, suppose G(C) has a double 

dominating set S of cardinality < 2n. 

We must show that C has a satisfying truth assignment. Each 

vertex of the form Vi,v'i must be either in S or be dominated by two 

vertices in S, each K4 in G(c) must have at least two vertices in S for 

double domination. Therefore |S|>2n. So |S|=2n. 

In fact each K4 must contain exactly two vertices of S. Therefore S 

contains no clause vertex Cj. But since S is a double dominating set each 

Cj must be dominated by two vertices in S. We create a satisfying truth 

assignment for C as follows : For each variable Ui assign the value true if 

Uj,Vj GS and false if UjgS and Vj^S. Let Cj= {xb xm, xt} where x can be 

u or u'. Let for example, Cj = {ui,um',ut}, C, is adjacent to 

ui, vi, um', vm' ut,vt. Suppose Cj contain no true variable. Then Ui, um,' ut are 

false. Therefore ui is false, um is true and ut is false. So ui, vi gS. um, vmeS 

and ut, vt£S. Therefore Cj is not adjacent to any point of S, a 

contradiction. So Cj contains atleast one true variable. Hence C is a truth 

assignment. The graph G(C) has 4n+m vertices and 6(n+m) edges. The 
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length of an instance of 3-SAT is 3m+n (n variable and m sets of 3 

variables each). Therefore cardinality of G(C) is at most a constant times 

the cardinality of C. Therefore the graph G(C) can be constructed from an 

instance of 3-SAT in a polynomial time. Therefore double dominating set 

is NP-complete. • 

5.2. Complexity of Dom-strong domination : 

5.2.1. Theorem : 

Double -strong dominating set is NP-complete. (dom-strong 

dominating set) 

Proof: 

Double -strong dominating set eNP. For let G=(V,E) be a graph, k 

a positive integer and an arbitrary set S cVwith |S|<k; It is easy to verify 

in polynomial time, whether S is a double-strong dominating set. 

3-SAT instance : 

A set U ={Ui,u2 un} of variables and a set C = {cic2, cm} of 

3-element sets called clauses, where each clause Cj, contains three district 

occurrences of either a variable u; or its complement Uj. For example a 

clause might be Ci= { u ^ ' , ^ }. 

Question: Does C have a satisfying truth assignment that is an 

assignment of true or false to the varibles in V such that atleast one 

variable in each clause in C is assigned value True ! 
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Given an instance C of 3-SAT, we construct an instance G(C) of 

DOUBLE-STRONG-DOMINATING SET as follows : 

For each variable Ui construct a K6 with variables labeled 

Ui,Uj',Vi,Vj',Wi and W;'. For each clause Cj = {u;,Uk',ui} create a single vertex 

labeled Cj and add edges UjCj, VjCj, Uk'cj, vk'Cj, ujCj and vjCj. Suppose C is a 

satisfying truth assignment. Let S be a subset of V constructed as 

follows: 

If u; is true then ui? vj belong to S. 

If Uj is false then Uj',Vi', belong to S. 

Claim : 

S is a double-strong dominating set for the graph G(C). Suppose 

UJSS. Then u ^ e S . Therefore Ui', vj'^S and Uj', Vj' are dominated by ui5Vi. 

If UjGCj then Cj is dominated by Ui,Vj. Suppose Uj£S. Then u/eS, v/eS. 

Ui,Vj are dominated by Ui',Vj'. If u/ecj then Cj is dominated by Ui',Vi'. Since 

C is a truthful assignment, every Cj contains at least one truthful variable 

and Cj will be double strong dominated by that variable in S and the 

corresponding v-variable in S. Therefore S is a double strong dominating 

set of the graph G(C) and |S| = 2n. Conversely, suppose G(C) has a 

double-strong dominating set S of cardinality <2n. We must show that C 

120 



has a satisfying truth assignment. Each vertex of the form vi5 v;' must be 

either in S or be dominated by two vertices in S, each K<3 in G (C) must 

have atleast two vertices in S for double strong domination. Therefore 

|S|>2n. So |S|=2n. In fact each K̂  must contain exactly two vertices of S. 

Therefore S contain no clause vertex Cj. But since S is a double strong 

dominating set each Cj must be dominated by two vertices of S. We create 

a satisfying truth assignment for C as follows: 

For each variable u; assign the value true if ui? VJGS and false if 

U;£S and v^S. Let Cj={xi, xm, xt} where x can be u or u'. Let 

Cj={ui, um', ut}. Cj is adjacent to uj, vi, um', vm' and ut, vt. Suppose Cj 

contain no true variable. Then ui, um', ut are false. Therefore ui is false, um 

is true and ut is false. So uh vigS um, vmeS and ut, vt £S. Therefore Cj is 

not adjacent to any point of S, a contradiction. So Cj contain atleast one 

truth variable. Therefore C is a truth assignment. The graph G(C) has 

6n+m vertices and 15 (n+m) edges. The length of an instance of 3-SAT is 

3 (m+n) (n variable and m sets of 3 variables each). Therefore the 

cardinality of G(C) is at most a constant times the cardinality of C. 

Therefore the graph G(C) can be constructed from an instance of 3-SAT 

in a polynomial time. 

So Double strong dominating set is NP-complete. • 
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5.2.2. Theorem : 

DSD set is NP-complete even for bipartite graphs. 

Proof: 

Let G=(V,E) be an arbitrary graph. Consider the graph 

VV+ = ( V u {xbx2}, V u {yi,y2, Y3},E+ ) whose vertex set 

consists of two copies of V denoted by V and V together with five 

special vertices jch x2, yi,y2 and y3 whose edge set E+ consists of 

i. edges uv' and u'v for each edge uveE(G). 

ii. edges of the form uu' for each vertex ueV. 

iii. edges of the form u'xb u'x2 for every vertex ueV. 

iv. edges xiyu xxy2, xxy2, x2yi, x2y2, x2y3. 
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It can be observed that xirx2 are of degree n+3 where n is the order 

of the graph. Also the degree of any point u' is <n-l+l+2=n+2. Therefore 

xh x2 are strong isolates in VV+. So any double strong dominating set of 

VV+ must contain xh x2. The degree of u' in VV+ is strictly greater than 
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the degree of u in VV+. It can be easily observed that if {ui u2 uk} is a 

double strong dominating set of G, then {u/, u2', Uk',*^} is a 

double dominating set of VV+. Therefore G has a dsd set of cardinality < 

k if and only if VV+ has a dsd set of cardinality < k+2. The dsd-set of an 

arbitrary graph is NP-complete. Therefore DOUBLE-STRONG-

DOMINATING SET is NP-complete even for bipartite graphs. 

5.3. Fractional double domination: 

5.3.1. Definition : 

Let G=(V,E) be a simple graph. A function f:V—»[0,1] is called a 

fractional double dominating function if for every v e V, ^ /(«)+/(v) > 2. 
usN[v] 

5.3.2. Remark : 

If D is a double dominating set of G then ^zD(")+XD (v) - 2-
ueJV[v] 

5.3.3. Definition : 

Let f be a fractional double dominating function. Define 

W{f) = X f(v) is called the weight of f. 
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5.3.4. Definition : 

The fractional double domination number denoted by y/dd(G) is the 

minimum weight of a fractional double domination function. 

5.3.5. Remark : 

For any graph G we have the following LPP: 

Min £ / (v) , Subject to / ( N [v]) +/(v) >2, f(v) e[0,l]. 
veV 

5.3.6. Result: 

1 (/,-!) 
rfdd(Kn)=2---^L 

n n\n +1) 

Proof: 

Choose a vertex of Kn and fix it. Let it be u. Define/:V-»[0,1] as 

follows : 

j(u)=- and f(v)=-, for every VGV(K„)-{U} 
n n 

y / ( w ) + / ( v ) = ^ ^ + i + 2 = 2 + i 
welfclv*u n n n n 

y / (w)+/(„ )=^zl)+I+I=2. 
„ZN[U] n n n 

SoFT(/) = 2 - i . 
n 
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Hence yfdd{Kn)<2 — . 

Suppose ym(Kn)=t<2 — = 2 s (say). Then there ex i s t /V-» 
n n 

such that f(v)= 2 s and 
« 

f(N[v])+f(v) > 2 for every ve V 

or f (V) + f(v) >2 for every V G V . 

or 2 s+ f (v)> 2 for every v eV. 

So f(v)>- + s for every veV. That is t= f (v) >l+sn. 

That is 2 s>l + sn 

2-->l + s{n + l) 
n 

\-->s{n + \) 
n 

So s< 
n(n + l) 

Let/(v)=i+ " - 1 

n n(n +1) 

Then f(N[v]) +f(v) 

1 « - l 
= n - + -

» - l 1 
+ + — 

« n(« + l)J «(« + l) » 
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, n(n-\) n-\ 1 
•\ + -j { + + -

n\n + \) n{n + 1) n 

. 1 [ ( n - l X n + l ) | 1 
n(n + l) n 

:1 + + - = 2 
n n 

But j ^ * , ) * 2 - 1 " X 

Also yfdd(Kn)<2 

n n(n +1) 

1 M-l 
n n(n +1) 

Hence r (Kn) = 2 - - - ^ -
n n(n +1) 

5.3.7. Theorem : 

If G has n vertices and is k-regular then yfdd{G) = • 2n 

k + 2 

Proof: 

Consider the constant function f:G-»[0,l] with constant value 

- ? - . Then Y f(u)+/(v) = 2(A: + 1) + - ? - = 2. Therefore f is a fractional 
k + 2 u^{v] k + 2 k + 2 

double domination function. 

2/i 
Therefore yfdd(G)< 

k + 2 
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The dual of the notion of double domination function is the notion 

of closed neighborhood double packing function which is defined to be 

the function g:V ->[0,1 ] such that ^g(u) + g(v) < 1. 
ueN[v] 

The dual problem of the minimization of double domination 

function is the following problem. 

Max Z*=2 £g(M) subject to £g(M) + g(v)<l. 
\UGV J ueN[v] 

Consider the constant function f:V->[0,l] with constant value 

2n 1 Then £ / ( „ ) +/(v) = A±i + - J _ = i and fafW 
\ueV J k + 2 k+2 ^ k+2 k+2 

Thus f is both a double domination and a double packing function. 

Therefore f is a minimum double domination function. 

2n 
Therefore yfdd (G) = weight of / =| / 

Hence yfdd(G) 

k + 2 

2n 

k + 2 

5.3.8. Corollary : 

For cycle C„, yfdd(C„) = -j = ^. 

• • • 
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OPEN PROBLEMS 

1. Let G=(V,E) be a simple graph. Let veV. Determine the 

conditions for which ve V + amd ve V '. 

2. Find suitable graphs which have independent dsd sets; Determine 

the conditions for the existence of an independent dsd set in a 

graph. 
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